The exam is worth 25 points. There are 4 problems worth 6 points each, and you get 1 point for writing your name.

Problem 1. [6 points] Consider the cubic equation $a x^{3}+b x^{2}+c x+d=0$.
(a) What change of variable do you make to get the "depressed" cubic equation?

You set $x=y-b / 3 a$ to get an equation in y with no y^{2} term. (This is called the "depressed" cubic.) You can divide the whole equation by a if you want, but this is not so important (I gave full points either way.)
(b) Now suppose that the depressed equation has roots $-1,0,1$. In this case, what are the roots of the original?

If $y=-1,0,1$ are the roots of the depressed cubic, then the original has roots

$$
x=-1-\frac{b}{3 a}, \quad x=0-\frac{b}{3 a}, \quad x=1-\frac{b}{3 a} .
$$

(c) Use the information from (b) to completely factor $a x^{3}+b x^{2}+c x+d$.

Since we know the roots, we can factor the polynomial $a x^{3}+b x^{2}+c x+d$ to get

$$
a\left(x+1+\frac{b}{3 a}\right)\left(x+\frac{b}{3 a}\right)\left(x-1+\frac{b}{3 a}\right) .
$$

Problem 2. [6 points]
(a) Use de Moivre's formula to prove that $\cos (3 \theta)=4 \cos ^{3} \theta-3 \cos \theta$.

First we expand de Moivre's formula to get

$$
\begin{aligned}
\cos (3 \theta)+i \sin (3 \theta) & =(\cos \theta+i \sin \theta)^{3} \\
& =\cos ^{3} \theta+3 i \cos ^{2} \theta \sin \theta+3 i^{2} \cos \theta \sin ^{2} \theta+i^{3} \sin ^{3} \theta \\
& =\left(\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta\right)+i\left(3 \sin \theta \cos ^{2} \theta-\sin ^{3} \theta\right)
\end{aligned}
$$

Now we equate the real parts and use $\cos ^{2} \theta+\sin ^{2} \theta=1$ to get

$$
\begin{aligned}
\cos (3 \theta) & =\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta \\
& =\cos ^{3} \theta-3 \cos \theta\left(1-\cos ^{2} \theta\right) \\
& =\cos ^{3} \theta-3 \cos \theta+3 \cos ^{3} \theta \\
& =4 \cos ^{3} \theta-3 \cos \theta
\end{aligned}
$$

as desired.
(b) Find a similar formula for $\sin (3 \theta)$ in terms of $\sin \theta$.

If we equate the imaginary parts of the formula, we get

$$
\begin{aligned}
\sin (3 \theta) & =3 \sin \theta \cos ^{2} \theta-\sin ^{3} \theta \\
& =3 \sin \theta\left(1-\sin ^{2} \theta\right)-\sin ^{3} \theta \\
& =3 \sin \theta-3 \sin ^{3} \theta-\sin ^{3} \theta \\
& =3 \sin \theta-4 \sin ^{3} \theta
\end{aligned}
$$

Problem 3. [6 points]
(a) Find the complete solution to $x^{4}+4=0$, or $x^{4}=-4$.
(There are several ways to do this problem; your solution may look different.) Note that -4 has modulus 4 and angle π. Thus, if $x^{4}=-4$, then x must have modulus $\sqrt[4]{4}=\sqrt{2}$ (here we take the real, positive square root) and angle θ where $4 \theta=\pi+2 \pi k$ for any $k \in \mathbb{Z}$. There are four such angles:

$$
\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4} .
$$

We conclude that the solutions are

$$
\sqrt[4]{-4}=\left\{\sqrt{2} e^{\pi i / 4}, \sqrt{2} e^{3 \pi i / 4}, \sqrt{2} e^{5 \pi i / 4}, \sqrt{2} e^{7 \pi i / 4}\right\}
$$

Since we know $\cos (\pi / 4)=\sin (\pi / 4)=1 / \sqrt{2}$, these roots can be simplified to get

$$
\sqrt[4]{-4}=\{1+i,-1+i,-1-i, 1-i\} .
$$

Here's a picture.

(b) Factor $x^{4}+4$ into two quadratics with real coefficients.

Now recall that for $z=a+i b$ we have $(x-z)(x-\bar{z})=x^{2}-2 a x+|z|^{2}$, which is real. Using this idea we group the roots into conjugate pairs to get

$$
\begin{aligned}
x^{4}+4 & =[(x-(1+i))(x-(1-i))][(x-(-1+i))(x-(-1-i))] \\
& =\left(x^{2}-2 x+\left(1^{2}+1^{2}\right)\right)\left(x^{2}-(-2) x+\left(1^{2}+1^{2}\right)\right) \\
& =\left(x^{2}-2 x+2\right)\left(x^{2}+2 x+2\right) .
\end{aligned}
$$

Problem 4. [6 points] Consider the cubic polynomial $f(x)=a x^{3}+b x^{2}+c x+d$.
(a) Compute a formula for $\frac{f(x)-f(y)}{x-y}$.

We have

$$
\begin{aligned}
f(x)-f(y) & =\left(a x^{3}+b x^{2}+c x+d\right)-\left(a y^{3}+b y^{2}+c y+d\right) \\
& =a\left(x^{3}-y^{3}\right)+b\left(x^{2}-y^{2}\right)+c(x-y) \\
& =a(x-y)\left(x^{2}+x y+y^{2}\right)+b(x-y)(x+y)+c(x-y) \\
& =(x-y)\left[a\left(x^{2}+x y+y^{2}\right)+b(x+y)+c\right],
\end{aligned}
$$

or

$$
\frac{f(x)-f(y)}{x-y}=a\left(x^{2}+x y+y^{2}\right)+b(x+y)+c
$$

(b) Now suppose that $f(1)=0$. In this case, use your formula to factor $f(x)$.

Putting $y=1$ into the formula yields

$$
f(x)=f(x)-f(1)=(x-1)\left[a\left(x^{2}+x+1\right)+b(x+1)+c\right] .
$$

Note: I did not ask you to prove Descartes' Factor Theorem, but Problem 4 tested your understanding of the proof. Problem 1 tested your understanding of why we care about the depressed cubic. Problem 2 tested your understanding of de Moivre's formula. Problem 3 tested your understanding of roots of unity and conjugates. (And once upon a time I assigned Problem 3(a) as an exercise in class.)

The average for this exam was $17.79 / 25$ and the median was $19 / 25$. Out of 43 students, 10 students received a score of 24 or 25 out of 25 . I do not assign letter grades for exams, but I estimate the following approximate grade ranges:

$$
\begin{array}{r}
20-25 \\
15-19 \\
\approx A \\
9-14
\end{array}
$$

