
Math 310 Spring 2024
Homework 5 Drew Armstrong

1. Integrating a Scalar Along a Parabola. Let C be the portion of the parabola y = x2

between points (0, 0) and (1, 1), and consider the scalar function f(x, y) = x. Compute the
integral of f along C: ∫

C
f ds.

[Hint: You must choose a parametrization of C. I recommend r(t) = (t, t2) with 0 ≤ t ≤ 1.
The resulting integral may be computed by hand using substitution.]

Using the parametrization r(t) = (t, t2) with 0 ≤ t ≤ 1 we have∫
C
f ds =

∫ 1

0
f(r(t))‖r′(t)‖ dt

=

∫ 1

0
f(t, t2)‖〈1, 2t〉‖ dt

=

∫ 1

0
t
√

1 + 4t2 dt

=
1

8

∫ 5

1

√
u du u = 1 + 4t2, du = 8t dt

=
1

8

u3/2

3/2

∣∣∣∣∣
u=5

u=1

=
1

12

(
53/2 − 1

)
.

2. Projection. Let F and u be any vectors with ‖u‖ = 1 and let p be the component of F
in the direction of the unit vector u.

(a) Since p is parallel to u we know that p = tu for some scalar t. Use the fact that the
vector p− F is perpendicular to u to prove that t = F • u.

(b) Draw a picture showing the vectors F, u and p.

(a) We assume that u is a unit vector, so that u • u = 1. Since p = tu and since p − F is
perpendicular to u we have

(p− F) • u = 0

p • u− F • u = 0

tu • u = F • u

t = F • u.

In other words, the projection of F onto u is p = tu = (F • u)u.

Remark: For a general vector v we consider the unit vector u = v/‖v‖, which points in the
same direction. Then the projection of F onto the direction of v is

(F • u)u =

(
F •

(
v

‖v‖

))
v

‖v‖
=

(
F • v

‖v‖2

)
v =

(
F • v

v • v

)
v.

Because this is more complicated, projections are usually computed with unit vectors.
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(b) Picture:

3. Integrating Vector Fields Along Different Curves. By definition, the integral of a
vector field F along a parametrized curve r(t) is∫

F(r(t)) • r′(t) dt.

Consider the two fields F(x, y) = 〈2xy, x2〉, G(x, y) = 〈2y, x2〉, and the two different curves
r(t) = (t, t) and s(t) = (t, t2) between the points (0, 0) and (1, 1).

(a) Integrate F along r(t) and s(t). Observe that you get the same answer.
(b) Integrate G along r(t) and s(t). Observe that you don’t get the same answer.

(a) To integrate F(x, y) = 〈2xy, x2〉 along r(t) = (t, t) we first compute r′(t) = 〈1, 1〉 and
F(r(t)) = F(t, t) = 〈2t2, t2〉. Then we compute∫ 1

0
F(r(t)) • r′(t) dt =

∫ 1

0
〈2t2, t2〉 • 〈1, 1〉 dt

=

∫ 1

0
(2t2 + t2) dt

=

∫ 1

0
3t2 dt

= 3
1

3
t3
∣∣∣∣t=1

t=0

= 1.

To integrate F along s(t) = (t, t2) we first compute s′(t) = 〈1, 2t〉 and F(s(t)) = F(t, t2) =
〈2t3, t2〉, hence ∫ 1

0
F(s(t)) • s′(t) dt =

∫ 1

0
〈2t3, t2〉 • 〈1, 2t〉 dt

=

∫ 1

0
(2t3 + 2t3) dt
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=

∫ 1

0
4t3 dt

= 4
1

4
t4
∣∣∣∣t=1

t=0

= 1.

Note that we get the same answer. This happened because F is a conservative vector field
with potential f(x, y) = x2y. Indeed:

∇f(x, y) = 〈fx, fy〉 = 2xy, x2〉 = F(x, y).

This implies that for any path from (0, 0) to (1, 1) we must have∫ (1,1)

(0,0)
F = f(1, 1)− f(0, 0) = 12 · 1− 02 · 0 = 1.

(b) To integrate G(x, y) = 〈2y, x2〉 along r(t) = (t, t) we first compute r′(t) = 〈1, 1〉 and
G(r(t)) = G(t, t) = 〈2t, t2〉. Then we compute∫ 1

0
G(r(t)) • r′(t) dt =

∫ 1

0
〈2t, t2〉 • 〈1, 1〉 dt

=

∫ 1

0
(2t+ t2) dt

= 2
1

2
t2 +

1

3
t3
∣∣∣∣t=1

t=0

= 1 +
1

3
= 4/3

To integrate G along s(t) = (t, t2) we first compute s′(t) = 〈1, 2t〉 and G(s(t)) = G(t, t2) =
〈2t2, t2〉, hence ∫ 1

0
G(s(t)) • s′(t) dt =

∫ 1

0
〈2t2, t2〉 • 〈1, 2t〉 dt

=

∫ 1

0
(2t2 + 2t3) dt

= 2
1

3
t3 + 2

1

4
t4
∣∣∣∣t=1

t=0

=
2

3
+

1

2
= 7/6.

Note that we do not get the same answer. This implies that the vector field G is not conser-
vative, meaning there is no scalar field g(x, y) that satisfies ∇g = G.

Remark: We could also check this using Green’s criterion. Let G = 〈P,Q〉 with P = 2y and
Q = x2. Since Qx = 2x and Py = 2 are not equal, the field G is not conservative. It may still
happen accidentally that the integral of G along two specific paths with the same endpoints
are equal (as happened in the original version of this problem), but it won’t happen in general.
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4. Area of a Pringle. Let D be the surface in R3 defined by z = xy and x2 + y2 ≤ 1, which
looks like a pringle chip. We can parametrize this region by

r(u, v) = 〈u cos v, u sin v, (u cos v)(u sin v)〉
with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π.

(a) Compute the tangent vectors ru and rv. [Hint: Use the identity sin(2v) = 2 sin v cos v.]
(b) Compute the cross product ru × rv.
(c) Compute the length ‖ru × rv‖ and simplify as much as possible. [Hint: The answer is

‖ru × rv‖ = u
√
u2 + 1.]

(d) Use your answer from part (c) to compute the area of the pringle:

Area(D) =

∫∫
D

1 ‖ru × rv‖ dudv.

Here is a picture of the pringle:

(a) First we write

r(u, v) = 〈u cos v, u sin v, u2 sin(2v)/2〉.
Then we compute

ru = 〈cos v, sin v, u sin(2v)〉,
rv = 〈−u sin v, u cos v, u2 cos(2v)〉

(b) In order to simplify the cross product we will use the trig identities cos(2v) = cos2 v−sin2 v
and sin(2v) = 2 sin v cos v. If ru × rv = 〈a, b, c〉 the we have

a = (sin v)(u2 cos(2v))− (u sin(2v))(u cos v)
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= (sin v)(u2(cos2 v − sin2 v))− (2u sin v cos v)(u cos v)

= u2 sin v cos2 v − u2 sin3 v − 2u2 sin v cos2 v

= (u2 sin v)
(
cos2 v − sin2 v − 2 cos2 v

)
= (u2 sin v)

(
− cos2 v − sin2 v

)
= (u2 sin v)(−1)

= −u2 sin v,

and

b = (−u sin v)(u sin(2v))− (cos v)(u2 cos(2v))

= (−u sin v)(2u sin v cos v)− (cos v)(u2(cos2 v − sin2 v)

= −2u2 sin2 v cos v − u2 cos3 v + u2 sin2 v cos v

= (u2 cos v)(−2 sin2 v − cos2 v + sin2 v)

= (u2 cos v)(− sin2 v − cos2 v)

= (u2 cos v)(−1)

= −u2 cos v,

and

c = (cos v)(u cos v)− (sin v)(−u sin v)

= u cos2 v + u sin2 v

= u.

In summary, we have

ru × rv = 〈−u2 sin v,−u2 cos v, u〉.

(c) The length of the cross product is

‖ru × rv‖ =
√

(−u2 sin v)2 + (−u2 cos v)2 + (u)2

=
√
u4 sin2 v + u4 cos2 v + u2

=
√
u4 + u2

=
√
u2(u2 + 1)

= u
√
u2 + 1,

because u ≥ 0.

(d) Hence the surface area of the pringle is

Area(D) =

∫
D

1 dA

=

∫∫
1‖ru × rv‖ dudv

=

∫∫
u
√
u2 + 1 dudv

=

∫ 2π

0
dv ·

∫ 1

0
u
√
u2 + 1 du



6

= 2π

∫ 1

0
u
√
u2 + 1 du

= π

∫ 2

1

√
w dw w = u2 + 1, dw = 2u du

= π
w3/2

3/2

∣∣∣∣∣
w=2

w=1

=
2π

3

(
23/2 − 1

)
≈ 3.83.

Note that this is slightly larger than the area of a flat circle of radius 1 (i.e., 3.14).

5. Proof of Conservation of Energy. A conservative force field F has the form F = −∇f
for some scalar potential f . Suppose that a particle of mass m travels along a trajectory r(t).
Newton says that the force F acting on the particle satisties

F(r(t)) = mr′′(t).

The kinetic energy of the particle at time t is KE(t) = 1
2m‖r

′(t)‖2, the potential energy at
time t is PE(t) = f(r(t)), and the total mechanical energy is E(t) = KE(t) + PE(t). Use the
chain rule and product rule for derivatives to show that

E′(t) = 0.

[Hint: Write ‖r′(t)‖2 = r′(t) • r′(t).]

First we use the “multivariable product rule” compute the derivative of KE(t):

KE′(t) =

[
1

2
mr′(t) • r′(t)

]′
=

1

2
m
[
r′(t) • r′(t)

]′
=

1

2
m
[
r′′(t) • r′(t) + r′(t) • r′′(t)

]
=

1

2
m
[
2r′′(t) • r′(t)

]
= mr′′(t) • r′(t)

= F(r(t)) • r′(t).

Then we use the “multivariable chain rule” to compute the derivative of PE(t):

PE′(t) = [f(r(t))]′

= ∇f(r(t)) • r′(t)

= −F(r(t)) • r′(t).

Then putting the two together gives

E′(t) = KE′(t) + PE′(t) = F(r(t)) • r′(t)− F(r(t)) • r′(t) = 0.

Thus the total mechanical energy of the system is constant.
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6. Application of Conservation of Energy. Choose a coordinate system in R3 with the
sun at position (0, 0, 0). Suppose that the sun has mass M . If F(x, y, z) is the gravitational
force exerted by the sun on a spaceship of mass m at position (x, y, z), Newton tells us that
F(x, y, z) = −∇f(x, y, z), where1

f(x, y, z) = −1 · GMm√
x2 + y2 + z2

is called the gravitational potential. At a certain time, the spaceship has speed s0 and distance
d0 from the origin. At a later time the spaceship has speed s1 and distance d1 from the origin.
Use conservation of energy to compute s1 in terms of s0, d0 and d1. (Assume that no other
forces are acting on the spaceship.)

If the spaceship follows trajectory r(t) we note that

PE(t) = f(r(t)) = −GMm

‖r(t)‖
.

That is, the gravitational potential energy only depends on the distance of the spaceship from
the origin. On the other hand, the kinetic energy only depends on the length of the velocity:

KE(t) =
1

2
m‖r′(t)‖2.

Suppose the spacehsip has initial speed s0 = ‖r′(0)‖ and initial distance d0 = ‖r(0)‖, so the
total mechanical energy at time zero is

E(0) =
1

2
ms20 −

GMm

d0
.

If s1 and d1 are the speed and distance at some other time (say t = 1), then the total
mechanical energy at that time is

E(1) =
1

2
ms21 −

GMm

d1
.

Then since E(t) is constant we must have

E(0) = E(1)

1

2
s20 −

GMm

d0
=

1

2
s21 −

GMm

d1

s20 −
2GM

d0
= s21 −

2GM

d1
,

which implies that

s1 =

√
s20 + 2GM

(
1

d1
− 1

d0

)
.

1G is a constant of nature called the gravitational constant.
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Fun Application (Escape Velocity). The same formula works with a planet instead of
the sun. Suppose that the spaceship sits on the surface of a planet of radius R and mass M ,
so that d0 = R. What initial speed is needed to just escape gravitational field of the planet?

At some later time we want s1 = 0 and d1 =∞, so by conservation of energy we must have

s0 =

√
s21 + 2GM

(
1

d0
− 1

d1

)
=

√
02 + 2GM

(
1

R
− 1

∞

)
=

√
2GM

R
.

The mass of the spacecraft is irrelevant, and the direction of launch is irrelevant (but don’t
launch it directly into the ground). Of course we neglect air resistance and any other forces.

To compute the escape velocity of the Earth, we input

G = 6.673× 10−11 m3kg−1s−2,

R = 6.271× 106 m,

M = 5.972× 1024 kg,

to get

s0 =

√
2(6.673)10−11(5.972)1024

(6.271)106
≈ 1.13 km/s.


