Math 310 Spring 2024
Homework 4 Drew Armstrong

Problem 1. Area of a Parametrized Region. Given a region D in R?, the area is

Area(D) = //D 1dzdy.

For each of the following problems you should (1) draw the region, (2) find a parametrization,
(3) use your parametrization to compute the area.

(a) The half-circle satisfying 22 + y* < 4 and = > 0. [Hint: Use polar coordinates.]
(b) The region satisfying 22 + 32 < 4 and = > 1. [Hint: Don’t use polar coordinates. You
will need the antiderivative

/2\/4 —22dx = x\/4 — 22 + 4arcsin(z/2).]

(a): In this case D is the right half of a circle of radius 2:
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We parametrize D using polar coordinates with 0 < r < 2 and —7/2 < 0 < 7/2. The area is
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Note that this agrees with the formula 7(2)? = 47 for the area of the full circle.

(b): Here is a picture of the region D:
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We can parametrize this region by 1 <z < 2 and —v4 — 22 < 2 < V4 — 22. The area is
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Remark: It is also possible (but more difficult) to parametrize this region using polar coordi-
nates. Consider the following picture:
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The picture shows that —7/3 <0 < 7/3 and 1/cosf < r < 2, so the area is
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The fact that we got the same answer each time means that the calculations are probably
correct. This problem can also be solved without Calculus:

https://en.wikipedia.org/wiki/Circular_segment#Arc_length_and_area

Problem 2. Center of Mass of a 2D Region. Let D be the region parametrized by
0<z<2and z<y<br— 222. Think of D as a solid with mass density 1.

(a) Compute the total mass M = [[,, 1 dxdy.

(b) Compute the moments M, = [ [,z drdy and My, = [[,ydxdy.
(c) Compute the center of mass.

(d) Draw the region and its center of mass.

(a): The mass (i.e., the area) of the region D is
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(b): The moment in the x direction is

M, = // z dxdy
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It is just a coincidence that M, = M. The moment in the y direction is

M, = // y dxdy
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(c): The center of mass is

(d): Here is a picture:
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Problem 3. Polar Coordinates. Let x = rcosf and y = rsinf. We already know that
B(SL‘, y) Iy g
= det =r.
o) \y ow) "

The general theory predicts that we must also have

3(7", 9) - Ty Ty) 1
o(z,y) = det <9w 0y> o

Check that this is true. [Hint: r = /22 4+ y? and 0 = arctan(y/x).]

First we compute the derivatives using the one variable chain rule:
re = (1/2)(@® +¢*) 72 (22) = 2(2® + 7)1,
re = (1/2)(2* +y*)72(2y) = y(@® + )72,
0. = 1/(1+ (y/2)*)(~y/2*),
0y =1/(1+ (y/2)*)(1/x).
The formulas for 6, and 6, can be simplified using 1/(1 + (y/x)?) = 2?/(2% + y*) to get
0. = 2* /(2 + y*) (—y/a?) = —y/(@® + ),
0y = 2*/(2® +y*)(1/x) = 2/(a® + ).

Then we compute the determinant:
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_ (1,2 +y2)—1/2
=1/ +y?
=1/r.

That was weirdly complicated, but we got the right answer.



Problem 4. Center of Mass of a 3D Region. Let D be the tetrahedron with vertices
(0,0,0), (1,0,0), (0,1,0) and (0,0,1). Think of D as a solid with constant mass density 1.
This region can be parametrized by 0 <2 <1, 0<y<l—-—zand0<z<1 -2 —y.

(a) Compute the total mass M = [[[, 1dzdydz.
(b) Compute the moments

Mx—/// xdrdydz, My—// ydxdydz, MZ—/// zdzxdydz.

[Hint: There might be a shortcut.]
(c) Compute the center of mass.

(a): The total mass (i.e., the volume) i

M= /// ldacdydzl
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(b): Because the shape D is symmetric under permuting z,y, z we know that M, = M, = M.
It turns out that M, is easiest to compute:
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(c): The center of mass is

) = M, M, M.\ (1/24 1/24 1/24\ (1 11
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Remark: Consider the solid n-dimensional “simplex” with n + 1 vertices:

(0,...,0),(1,0,...,0),...,(0,...,0,1).

Using the same method, one can show that the n-dimensional “hypervolume” is 1/n! and the
center of mass is (1,1,...,1)/(n+1). However, as you can imagine, the computation is messy.
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Problem 5. Cylindrical Coordinates. Let D be a solid cone of radius 1 and height 1. We
can think of this as the solid region defined by 22 + y?> < 1and 0 < z < 1 — /22 + y2. Use
cylindrical coordinates to compute the integral

J[[ zdwiu

[Hint: Cylindrical coordinates are defined by = = rcosf, y = rsinf, z = z, and satisfy
0(z,y,2)/0(r,8,z) = r. That is, dedydz = r drdfdz.]

In cylindrical coordinates, the cone D has parametrization 0 < r < 1, 0 < 0 < 27 and

0<z<1-—r. Hence
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Remark: If the cone has uniform density 1 then we just computed M,. The volume of a cone
is (1/3)m(radius)?(height) = /3 and by symmetry we have M, = M, = 0, hence the center
of mass of the cone is

(M, M, M)\ 712\ 1
(ﬁ,y,Z)— (M’M’ M) - <0707 7_[_/3)_ (03074>

That is, the center of mass on the main axis at 1/4 of the height. This same result holds for
any cone of any radius and height.

Problem 6. Spherical coordinates p, ¢, 0 are defined by
x = psin¢cosb,
y = psin¢sinb,
zZ = pcos @,

and satisfy 9(z,y, 2)/0(r, $,0) = p?sin¢. That is, dvdydz = p?sin ¢ dpdpdfh. Use spherical
coordinates to compute the integral

1
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where D is the unit sphere. Even though the function f(x,y,2) = 1/(2? + y? + 22) goes to
infinity when (z,y,2) — (0,0, 0), the integral is still finite.

/R —— S
/ / / sin ¢ dpdpdf
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= 2 [— cos ¢

= 27 [— cos(m) + cos(0)]
= 2 [—(=1) + (1)
=4m.

Remark: This looked like the hardest problem on HW4, but it was actually the easiest!

Remark: The analogous integral in one dimension is f_ll(l /x?%) dx, which diverges. The anal-
ogous integral in two dimensions also diverges:
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For some reason the three dimensional version converges. We will observe the same type of
phenomenon when we study gravity.



