
Math 310 Spring 2024
Homework 3 Drew Armstrong

Problem 1. Tangent Lines to Implicit Curves. Consider a curve of the form f(x, y) = 0
for some function f : R2 → R. Let (x0, y0) be some point on the curve, so that f(x0, y0) = 0.
Then the tangent line to this curve at the point (x0, y0) has equation

∇f(x0, y0) • 〈x− x0, y − y0〉 = 0

∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0) = 0.

Find the equation of the tangent line in the following situations. In each case, use a computer
(e.g., desmos.com) to sketch the curve and the line:

(a) f(x, y) = x2 + y2 − 1 and (x0, y0) = (1, 0)
(b) f(x, y) = x2 + 3y2 − 1 and (x0, y0) = (1/2, 1/2)
(c) f(x, y) = x3 + x2 − y2 and (x0, y0) = (3, 6)
(d) Try f(x, y) = x3 + x2 − y2 and (x0, y0) = (0, 0). Observe that something goes wrong.

(a): The gradient field is ∇f(x, y) = 〈fx, fy〉 = 〈2x, 2y〉. Hence the equation of the tangent
line at the point (x0, y0) = (1, 0) is

∇f(1, 0) • 〈x− 1, y − 0〉 = 0

〈2(1), 2(0)〉 • 〈x− 1, y − 0〉 = 0

〈2, 0〉 • 〈x− 1, y − 0〉 = 0

2(x− 1) + 0(y − 0) = 0

2(x− 1) = 0

x− 1 = 0

x = 1.

Here is a picture:
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desmos.com
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(b): The gradient field is ∇f(x, y) = 〈fx, fy〉 = 〈2x, 6y〉. Hence the equation of the tangent
line at the point (x0, y0) = (1/2, 1/2) is

∇f(1/2, 1/2) • 〈x− 1/2, y − 1/2〉 = 0

〈2(1/2), 6(1/2)〉 • 〈x− 1/2, y − 1/2〉 = 0

〈1, 3〉 • 〈x− 1/2, y − 1/2〉 = 0

1(x− 1/2) + 3(y − 1/2) = 0

x+ 3y − 1/2− 3/2 = 0

x+ 3y − 2 = 0

x+ 3y = 2.

Here is a picture:

(c): The gradient field is ∇f(x, y) = 〈fx, fy〉 = 〈3x2 + 2x,−2y〉. Hence the equation of the
tangent line at the point (x0, y0) = (3, 6) is

∇f(3, 6) • 〈x− 3, y − 6〉 = 0

〈3(3)2 + 2(3),−2(6)〉 • 〈x− 3, y − 6〉 = 0

〈33,−12〉 • 〈x− 3, y − 6〉 = 0

33(x− 3)− 12(y − 6) = 0

33x− 12y − 99 + 72 = 0

33x− 12y − 27 = 0

33x− 12y = 27

11x− 4y = 9.

Here is a picture:



3

Problem 2. Tangent Plane to an Ellipsoid. A function f : R3 → R defines an implicit
surface f(x, y, z) = 0. If f(x0, y0, z0) = 0 then the tangent plane to this surface at the point
(x0, y0, z0) has equation

∇f(x0, y0, z0) • 〈x− x0, y − y0, z − z0〉 = 0

∂f

∂x
(x0, y0, z0)(x− x0) +

∂f

∂y
(x0, y0, z0)(y − y0) +

∂f

∂z
(z − z0) = 0.

Suppose that (x0, y0, z0) is some fixed point on the ellipsoid ax2 + by2 + cz2 = 1. Use the
above formula to show that the tangent plane to the ellipsoid at (x0, y0, z0) has equation

ax0x+ by0y + cz0z = 1.

[Hint: There is a nice simplification.]

The surface ax2 + by2 + cz2 = 1 can be expressed as the level surface f(x, y, z) = 0 where
f(x, y, z) = ax2 + by2 + cz2 − 1. The gradient field is

∇f(x, y, z) = 〈fx, fy, fz〉
= 〈2ax, 2by, 2cz〉.
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Let (x0, y0, z0) be any point on the surface ax2 + by2 + cz2 = 1, so that ax20 + by20 + cz20 = 1.
Then the equation of the tangent plane to the surface at this point is

∇f(x0, y0, z0) • 〈x− x0, y − y0, z − z0〉 = 0

〈2ax0, 2by0, 2cz0〉 • 〈x− x0, y − y0, z − z0〉 = 0

2ax0(x− x0) + 2by0(y − y0) + 2cz0(z − z0) = 1

2axx0 + 2byy0 + 2czz0 − 2ax20 − 2by20 − 2cz20 = 0

2axx0 + 2byy0 + 2czz0 = 2ax20 + 2by20 + 2cz20

axx0 + byy0 + czz0 = ax20 + by20 + cz20
axx0 + byy0 + czz0 = 1.

Isn’t that nice?

Problem 3. The Multivariable Chain Rule. Let f(x, y, z) be a function of x, y, z and
let x(t), y(t), z(t) be functions of t, so f(t) = f(x(t), y(t), z(t)) is also a function of t. The
multivariable chain rule says that

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
.

Equivalently, if we think of r(t) = (x(t), y(t), z(t)) as a parametrized path, then we can express
the chain in terms of the gradient vector and the dot product:

[f(r(t))]′ = ∇f(r(t)) • r′(t).

(a) Compute df/dt when f(x, y) = xy, x(t) = cos t and y(t) = sin t.
(b) Suppose that a path r(t) satisfies f(r(t)) = 7 for all t. In this case, prove that the

velocity r′(t) is perpendicular to the gradient vector ∇f(r(t)) at the point r(t).

(a): If f(x, y) = xy, x(t) = cos t and y(t) = sin t then we have

∂f/∂x = y,

∂f/∂y = x,

dx/dt = − sin t,

dy/dt = cos t,

and hence

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt

= (y)(− sin t) + (x)(cos t)

= (sin t)(− sin t) + (cos t)(cos t)

= cos2 t− sin2 t

= cos(2t).

This can also be computed without the chain rule. First substitute x(t) and y(t) into f(x, y):

f(t) = f(x(t), y(t)) = f(cos t, sin t) = (cos t)(sin t).
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Then differentiate using the product rule:

f ′(t) = (cos t)(sin t)′ + (cos t)′(sin t)

= (cos t)(cos t) + (− sin t)(sin t)

= cos2 t− sin2 t.

(b): Let f : Rn → R be any scalar function and let r : R → Rn be any path satisfying
f(r(t)) = 7 for all t. Then by the chain rule we have

[f(r(t))]′ = [7]′

∇f(r(t)) • r′(t) = 0,

which tells us that the vectors ∇f(r(t)) and r′(t) are perpendicular for all t. Geometric
meaning: The particle is traveling within the level surface f = 7, so the velocity vector r′(t)
is tangent to this surface at the point r(t). Since ∇f(r(t)) • r′(t) = 0 we conclude that the
gradient vector ∇f(r(t)) is perpendicular to the level surface at the point r(t). This is the
most important fact about gradient vectors.

Problem 4. Gradient Flow. Let f(x, y, z) denote the concentration of krill at point (x, y, z)
in the ocean. Suppose you are a whale swimming with trajectory r(t) and suppose that your
speed is constant, say ‖r′(t)‖ = 1.

(a) According to the multivariable chain rule, the rate of change of krill near you is
[f(r(t))]′ = ∇f(r(t)) • r′(t). Explain why this rate of change is maximized when
your velocity is parallel to the gradient vector ∇(f(t)). [Hint: Use the dot product
theorem u • v = ‖u‖‖v‖ cos θ.]

(b) For a simple example, take f(x, y, z) = x2 + xy + y2 − z2. And suppose your current
position is (1, 1, 1). In which direction should you swim in order to maximize your
intake of krill?

(a): If the whale travels at constant speed then we have ‖r′(t)‖ = 1. The concentration of
krill at the whale’s position is f(r′(t)), hence the rate of change of concentration is

[f(r(t))]′ = ∇f(r(t)) • r′(t) = ‖∇f(r(t))‖‖r′(t)‖ cos θ = ‖∇f(r(t))‖ cos θ,

where θ is the angle between the whale’s velocity r′(t) and the krill gradient ∇f(r(t)) at the
whale’s position. This quantity is maximized when θ = 0, i.e., when the whale is swimming
parallel to the gradient.

(b): If f(x, y, z) = x2 + xy + y2 − z2 then we have

∇f(x, y, z) = 〈fx, fy, fz〉 = 〈2x+ y, x+ y2,−2z〉.
If the whale is currently at position r(t) = (1, 1, 1) (the value of t is not important) then in
order to maximize the intake of krill the whale should swim in the direction of the gradient
vector

∇f(1, 1, 1) = 〈2(1) + (1), (1) + (1)2,−2(1)〉 = 〈3, 3,−2〉.

Problem 5. Linear Approximation. The multivariable chain rule can also be expressed
in terms of “linear approximation”. Consider a function f(x, y). If the inputs change by small
amounts ∆x and ∆y, then the out put changes by a small amount ∆f , which satisfies the
following approximation:

∆f ≈ ∂f

∂x
∆x+

∂f

∂y
∆y.
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Now consider a cylinder with radius r and height h. Suppose that you measure the radius
and the height to be approximately r = 10 cm and h = 15 cm, so the volume of the cylinder
is approximately V = πr2h = π(10)2(15) = 1500π cm2.

(a) If your ruler has a sensitivity of 0.1 cm, estimate the error in the computed value of
V . [Hint: Let ∆r = 0.1 and ∆h = 0.1. You want to estimate ∆V .]

(b) Find the percent errors in r, h and V . What do you notice?

(a): The volume of the cylinder is V = πr2h, which is a function of r and h. The linear
approximation formula tells us that

∆V ≈ Vr∆r + Vh∆h

= 2πrh∆r + πr2∆h

= π(2rh∆r + r2∆h).

If we measure r = 10 and h = 15 then our calculated value of V is π(10)2(15) = 1500π cm2.
If our ruler has sensitivity 0.1 cm then the errors in r and h are ∆r = ∆h = 0.1. Hence the
approximate error in our calculated value of V is

∆V ≈ π(2(10)(15)(0.1) + (10)2(0.1)) = 40π.

The percent errors in r and h are ∆r/r = 0.1/10 = 1% and δh/h = 0.1/15 = 0.67%. The
percent error in our calculated value of V is ∆V/V = 40π/1500π = 40/1500 = 2.66%. Note
that the percent error of the output is larger than the percent error of the input.

Problem 6. Multivariable Optimization. Consider the scalar field f(x, y) = x3+xy−y3.
(a) Compute the gradient vector field ∇f(x, y).
(b) Find all critical points; i.e., points (a, b) such that ∇f(a, b) = 〈0, 0〉.
(c) Compute the Hessian matrix Hf(x, y) and its determinant.
(d) Use the “second derivative test” to determine whether each of the critical points from

part (b) is a local maximum, local minimum, or a saddle point.

(a): The gradient vector is

∇f = 〈fx, fy〉 = 〈3x2 + y, x− 3y2〉.

(b): To find the critical points we must solve the following system of nonlinear equations:{
3x2 + y = 0,
x− 3y2 = 0.

Solving the second equation for x gives x = 3y2 then substituting into the first equation gives

3x2 + y = 0

3(3y2)2 + y = 0

27y4 + y = 0

y(27y3 + 1) = 0.
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This implies that y = 0 or

27y3 + 1 = 0

27y3 = −1

y3 = −1/27

y = −1/3.

(Recall that a negative real number has a unique real cube root.) When y = 0 we must have
x = 3y2 = 0 and when y = −1/3 we must have x = 3y2 = 3(−1/3)2 = 1/3. Hence there are
exactly two critical points: (0, 0) and (1/3,−1/3).

(c): To compute the determinant of the Hessian matrix we must first compute all second
derivatives of f :

fxx = 6x,

fyy = −6y,

fxy = 1,

fyx = 1.

Thus the Hessian determinant is

det(Hf) = det

(
fxx fxy
fyx fyy

)
= det

(
6x 1
1 −6y

)
= −36xy − 1.

Since det(Hf)(0, 0) = −1 < 0 we see that (0, 0) is a saddle point. Since det(Hf)(1/3,−1/3) =
−36(−1/9) − 1 = 3 > 0 we see that (1/3,−1/3) is a local maximum or minimum. Since
fxx(1/3,−1/3) = 6(1/3) = 2 > 0 we see that (1/3,−1/3) is a local minimum.1

Here is a picture:

1We could also check that fyy(1/3,−1/3) = −6(−1/3) = 2 > 0.


