
Math 310 Final Exam
Fall 2023 Wed Dec 13

No electronic devices are allowed. No collaboration is allowed. There are 10 pages and
each page is worth 6 points, for a total of 60 points.

1. A Plane in Space. Consider three points in space

P = (1, 0, 0), Q = (2, 1, 1), R = (0, 2, 1).

(a) Find the equation of the plane that passes through P , Q and R. [Hint: The fastest
way is to compute a cross product.]

Let’s define the vectors u = Q− P = 〈1, 1, 1〉 and v = R− P = 〈−1, 2, 1〉. Now we
compute the cross product:

u× v = “ det

 i i k
1 1 1
−1 2 1

 ”

= i det

(
1 1
2 1

)
− j det

(
1 1
−1 1

)
+ kdet

(
1 1
−1 2

)
= i(1− 2)− j(1 + 1) + k(2 + 1)

= −i− 2j + 3k

= 〈−1,−2, 3〉.

Since u and v are in the plane, the vector u × v is perpendicular to the plane.
Picking any point in the plane, say P = (1, 0, 0), the point-normal vector equation
of the plane is

〈−1,−2, 3〉 • 〈x− 1, y − 0, z − 0〉 = 0

−(x− 1)− 2(y − 0) + 3(z − 0) = 0

−x− 2y + 3z + 1 = 0

x+ 2y − 3z = 1.

(b) Compute the area of the triangle PQR. [Hint: You can think of the triangle as
half of a parallelogram.]

The area of the triangle is one half the area of the parallelogram spanned by u and
v. The area of the parallelogram can be computed via the dot product or the cross
product. Since we already know the cross product, we find that

(area of triangle) =
1

2
(area of parallelogram)

=
1

2
‖u× v‖

=
1

2

√
(−1)2 + (−2)2 + 32

=
1

2

√
14.



Here is a picture of the plane and the three points:1

2. Motion in the Plane. Consider a path r : R→ R2 with acceleration r′′(t) = 〈2, 6t〉.

(a) If the initial velocity is r′(0) = 〈0, 0〉 and the initial position is r(0) = (0, 0), find
the position at time t.
Integrate once to get the velocity:

r′(t) =

∫
r′′(t) dt

=

〈∫
2 dt,

∫
6t dt

〉
=
〈
2t+ c1, 3t

2 + c2
〉

The initial condition r′(0) = 〈0, 0〉 gives c1 = 0 and c2 = 0, hence r′(t) = 〈2t, 3t3〉.
Integrate again to get the position:

r(t) =

∫
r′(t) dt

=

〈∫
2t dt,

∫
32t dt

〉
=
〈
t2 + c3, t

3 + c4
〉

The initial condition r(0) = (0, 0) gives c3 = 0 and c4 = 0, hence r(t) = 〈t2, t3〉.

(b) Set up an integral to calculate the arc length traveled by the particle between
t = 0 and t = 1. [This integral can be solved by hand but you don’t need to do it.]

1https://www.desmos.com/3d/69c8809e40

https://www.desmos.com/3d/69c8809e40


The arc length traveled between t = 0 and t = 1 is

(arc length) =

∫ 1

0
(speed) dt

=

∫ 1

0
‖r′(t)‖ dt

=

∫ 1

0

√
(2t)2 + (3t2)2 dt

=

∫ 1

0

√
4t2 + 9t4 dt.

We can stop here, or we can observe that there is lucky simplification:∫ 1

0

√
4t2 + 9t4 dt =

∫ 1

0

√
t2(4 + 9t2) dt

=

∫ 1

0
t
√

4 + 9t2 dt (u = 4 + 9t2)

=

∫ 13

9

1

18

√
u du

=
1

18

[
2

3
u3/2

]13
4

=
1

27

(
(13)3/2 − (4)3/2

)
≈ 1.44.

Here is a picture of the path:

3. Linear Approximation. The volume of a cone with radius r and height h is

V (r, h) =
1

3
πr2h.



(a) Use the chain rule to express the differential dV in terms of dr and dh.

dV =
∂V

∂r
dr +

∂V

∂h
dh

=
2

3
πrh dr +

1

3
πr2 dh.

(b) Suppose you measure the can with a ruler to find that r = 5 cm and h = 9 cm,
hence V = 75π cm3. If the sensitivity of the ruler is 0.1 cm, estimate the error
in your computed value of V .

The result of part (a) tells us that

∆V ≈ 2

3
πrh∆r +

1

3
πr2 ∆h.

Substituting r = 5, h = 9 and ∆r = ∆h = 0.1 gives

∆V ≈ 2

3
π(5)(9)(0.1) +

1

3
π(5)2(0.1)

= 3π + 25π/30

= 115π/30.

(The percent error is ∆V/V = (115π/30)/(75π) ≈ 5%.)

4. Tangent Plane to a Surface. Consider the scalar field f(x, y, z) = x2 + y2 + 3yz.

(a) Compute the gradient vector field ∇f(x, y, z).

∇f = 〈∂f/∂x, ∂f/∂y, ∂f/∂z〉
= 〈2x, 2y + 3z, 3y〉.

(b) Note that f(1, 1, 1) = 12 + 12 + 3(1)(1) = 5. Use part (a) to find the equation of
the tangent plane to the surface f(x, y, z) = 5 at the point (1, 1, 1).

The gradient vector ∇f(1, 1, 1) is perpendicular to the level surface f(x, y, z) =
f(1, 1, 1). Hence the equation of the tangent plane is

∇f(1, 1, 1) • 〈x− 1, y − 1, z − 1〉 = 0

〈2, 5, 3〉 • 〈x− 1, y − 1, z − 1〉 = 0

2(x− 1) + 5(y − 1) + 3(z − 1) = 0

2x+ 5y + 3z = 10.

Here is a picture:2

2https://www.desmos.com/3d/6c14390a82
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5. Optimization. The scalar field f(x, y) = x4 − 8x2 + y2 has three critical points:

(0, 0), (−2, 0), (+2, 0).

(a) Compute the 2× 2 Hessian matrix Hf(x, y) and its determinant.

We compute the first and second partial derivatives:

fx = 4x3 − 16x

fy = 2y

fxx = 12x2 − 16

fxy = 0

fyx = 0

fyy = 2.

Hence the Hessian matrix is

Hf =

(
fxx fxy
fyx fyy

)
=

(
12x2 − 16 0

0 2

)
and its determinant is

det(Hf) = (12x2 − 16)(2)− (0)(0) = 8(3x2 − 4).

(b) Apply the second derivative test to determine whether each of the three critical
points is a local max, a local min or a saddle point of f .

Since det(Hf)(0, 0) = 8(−4) < 0 we conclude that (0, 0) is a saddle point of f .



Since det(Hf)(±2, 0) = 8(3(±2)2−4) > 0 we conclude that each of (±2, 0) is a local
max or min of f . Since fyy = 2 > 0 at both of these points, they are both local
minima. [We could also check that fxx > 0 at both points. Since det(Hf) > 0
the numbers fxx and fyy must have the same sign.]

Here is a picture:3

6. Integration in the Plane.

(a) Integrate f(x, y) = x+ y over the rectangle with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2.

∫∫
rectangle

(x+ y) dxdy =

∫ 2

0

(∫ 1

0
(x+ y) dx

)
dy

=

∫ 2

0

[
x2

2
+ xy

]1
0

dy

=

∫ 2

0

(
1

2
+ y

)
dy

=

[
1

2
y +

y2

2

]2
0

= 1 + 2

= 3.

3https://www.desmos.com/3d/7788ae17e1
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(b) Integrate f(x, y) = x + y over the region between the x-axis and the parabola
y = x2, for 0 ≤ x ≤ 1. [Hint: First parametrize the region.]

This region D is parametrized by 0 ≤ x ≤ 1 and 0 ≤ y ≤ x2. The integral is

∫∫
D

(x+ y) dxdy =

∫ 1

0

(∫ x2

0
(x+ y) dy

)
dx

=

∫ 1

0

[
xy +

y2

2

]x2
0

dx

=

∫ 1

0

(
x3 +

x4

2

)
dx

=

[
x4

4
y +

x5

10

]1
0

= 1/4 + 1/10

= 7/20.

7. Cylindrical and Spherical Coordinates.

(a) Use cylindrical coordinates to integrate the function f(x, y, z) = x over the cylinder
with x2+y2 ≤ 1 and 0 ≤ z ≤ 1. [Hint: We have x = r cos θ and dxdydz = r drdθdz.]
Let x = r cos θ and y = r sin θ so the cylinder is parametrized by 0 ≤ r ≤ 1,
0 ≤ θ ≤ 2π and 0 ≤ z ≤ 1. The integral is∫∫∫

cylinder
x dxdydz =

∫∫∫
cylinder

r cos θ r drdθdz

=

∫ 1

0
r2 dθ ·

∫ 2π

0
cos θ dθ ·

∫ 1

0
1 dz

=

(
13

3
− 03

3

)
(sin(2π)− sin(0)) (1− 0)

= (1/3)(0)(1)

= 0.

The integral is zero because of a symmetry. Positive and negative values of x cancel.

(b) Use spherical coordinates to compute the volume of the sphere x2 + y2 + z2 ≤ 1.
[Hint: dxdydz = ρ2 sinϕdρdθdϕ.]

The sphere is parametrized by 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π. The volume is

(volume of sphere) =

∫∫∫
sphere

1 dxdydz

=

∫∫∫
sphere

1 ρ2 sinϕdρdθdϕ

=

∫ 1

0
ρ2 dρ ·

∫ 2π

0
1 dθ ·

∫ π

0
sinϕdϕ

=

(
13

3
− 03

3

)
(2π − 0) (− cos(π) + cos(0))



= (1/3)(2π)(2)

= 4π/3.

This agrees with the formula (4/3)π(radius)3 since our sphere has radius 1.

8. Surface Area. Consider the following parametrized surface in R3:

r(u, v) = 〈1 + u− v, u+ 2v, u+ v〉 with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.

(a) Compute the tangent vectors ru and rv, and the normal vector ru × rv.

ru = 〈1, 1, 1〉,
rv = −1, 2, 1〉

ru × rv = 〈−1,−2, 3〉.
We already did this computation in Problem 1.

(b) Use your answer from part (a) to compute the area of the surface. [This surface
integral is unusual because it can be solved by hand.]

(surface area) =

∫∫
1 ‖ru × rv‖ dudv

=

∫∫ √
(−1)2 + (−2)2 + 33 dudv

=

∫ 1

0

∫ 1

0

√
14 dudv

=
√

14.

Indeed, the surface r(u, v) with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 is just the same
parallelogram that we considered in Problem 1. Here is a picture:4

4https://www.desmos.com/3d/c1ac15e534

https://www.desmos.com/3d/c1ac15e534


9. Green’s Theorem. Consider the vector field F(x, y) = 〈P,Q〉 = 〈y2, xy〉.

(a) Compute the line integral of F along the path r(t) = 〈t, t〉 for 0 ≤ t ≤ 1.

∫ 1

0
F(r(t)) • r′(t) dt =

∫ 1

0
F(t, t) • 〈1, 1〉 dt

=

∫ 1

0
〈t2, t2〉 • 〈1, 1〉 dt

=

∫ 1

0
2t2 dt

= 2/3.

(b) Compute the line integral of F along the path r(t) = 〈t, t2〉 for 0 ≤ t ≤ 1.

∫ 1

0
F(r(t)) • r′(t) dt =

∫ 1

0
F(t, t2) • 〈1, 2t〉 dt

=

∫ 1

0
〈t4, t3〉 • 〈1, 2t〉 dt

=

∫ 1

0
(t4 + 2t4) dt

=

∫ 1

0
3t4 dt

= 3/5.

(c) Compute the integral of the scalar curl(F) = Qx−Py = −y over the two-dimensional
region with 0 ≤ x ≤ 1 and x2 ≤ y ≤ x.

∫∫
D

curl(F) dxdy =

∫∫
D

(−y) dxdy

=

∫ 1

0

(∫ x

x2
−y dy

)
dx

=

∫ 1

0

[
−y

2

2

]x
x2
dx

=

∫ 1

0

(
−x

2

2
+
x4

2

)
dx

=

[
−x

3

6
+
x5

10

]1
0

=

(
−1

6
+

1

10

)
= −1/15.



(d) Your answers to parts (a), (b) and (c) are related by Green’s Theorem. Explain
the relationship. It may be helpful to draw a picture.

For any two-dimensional region D, Green’s Theorem says that∫∫
D

curl(F) =

∫
∂D

F,

where ∂D is the boundary curve of D, oriented so that D is “to the left”. In our
case the region D is the one described in part (c). We can describe the boundary
as ∂D = C2 − C1 where C2 is the path in (b) and C1 is the path in (a). Picture:

It follows from Green’s Theorem that∫∫
D

curl(F) =

∫
C2−C1

F∫∫
D

curl(F) =

∫
C2

F−
∫
C1

F

(answer to (c)) = (answer to (b))− (answer to (a)).

Indeed, we verify that −1/15 = 3/5− 2/3.


