No electronic devices are allowed. No collaboration is allowed. There are 5 pages and each page is worth 6 points, for a total of 30 points.

1. Integrating a Scalar Over a Rectangle.

(a) Integrate $f(x, y)=x+y$ over the rectangle with $-1 \leq x \leq 2$ and $1 \leq y \leq 3$.

$$
\begin{aligned}
\iint f(x, y) d x d y & =\int_{y=1}^{3}\left(\int_{x=-1}^{2}(x+y) d x\right) d y \\
& =\int_{y=1}^{3}\left[\frac{x^{2}}{2}+x y\right]_{x=-1}^{2} d y \\
& =\int_{y=1}^{3}\left[\frac{4}{2}+2 y-\left(\frac{1}{2}-y\right)\right] d y \\
& =\int_{y=1}^{3}\left[\frac{3}{2}+3 y\right] d y \\
& =\left[\frac{3}{2} y+3 \frac{y^{2}}{2}\right]_{y=1}^{3} \\
& =\frac{9}{2}+\frac{27}{2}-\left(\frac{3}{2}+\frac{3}{2}\right) \\
& =15
\end{aligned}
$$

Remark: We could view this as the volume of the region above the rectangle in the x, y-plane with $-1 \leq x \leq 2$ and $1 \leq y \leq 3$ and below the surface $z=x+y$.
(b) Compute the volume of the 3 D region above the square in the x, y-plane with $0 \leq x \leq 1$ and $0 \leq y \leq 1$, and below the surface $z=x^{2} y$.

We can view $x^{2} y d x d y$ as the volume of a skinny column above the point $(x, y, 0)$, where $x^{2} y$ is the height of the column and $d x d y$ are the area of the base. Hence

$$
\begin{aligned}
\text { Volume } & =\iint(\text { skinny columns }) \\
& =\iint x^{2} y d x d y \\
& =\int_{0}^{1} x^{2} d x \cdot \int_{0}^{1} y d y \\
& =\left(\frac{1^{3}}{3}-\frac{0^{3}}{3}\right) \cdot\left(\frac{1^{2}}{2}-\frac{0^{2}}{2}\right) \\
& =1 / 6
\end{aligned}
$$

Alternatively, some students parametrized the 3 D region by $0 \leq x \leq 1,0 \leq y \leq 1$ and $0 \leq z \leq x^{2} y$ and then computed

$$
\text { Volume }=\iiint 1 d x d y d z
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left(\int_{0}^{1}\left(\int_{0}^{x^{2} y} 1 d z\right) d x\right) d y \\
& =\int_{0}^{1}\left(\int_{0}^{1} x^{2} y d x\right) d y \\
& =\text { same as before. }
\end{aligned}
$$

Here is a picture of the 3 D region:

2. Polar and Cylindrical Coordinates.

(a) Use polar coordinates to integrate $f(x, y)=x^{2}+y^{2}$ over the unit disk $x^{2}+y^{2} \leq 1$.

Let $x=r \cos \theta$ and $y=r \sin \theta$ so that $x^{2}+y^{2}=r^{2}$ and $d x d y=r d r d \theta$. The unit disk is parametrized by $0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$, so that

$$
\begin{aligned}
\iint_{\text {disk }}\left(x^{2}+y^{2}\right) d x d y & =\iint_{\text {disk }} r^{2} \cdot r d r d \theta \\
& =\int_{0}^{2 \pi} 1 d \theta \cdot \int_{0}^{1} r^{3} d r \\
& =2 \pi \cdot\left(\frac{1^{4}}{4}-\frac{0^{4}}{4}\right) \\
& =\pi / 2 .
\end{aligned}
$$

(b) Use cylindrical coordinates to integrate $f(x, y, z)=x^{2}+y^{2}+z^{2}$ over the cylinder satisfying $x^{2}+y^{2} \leq 1$ and $0 \leq z \leq 1$.

Let $x=r \cos \theta$ and $y=r \sin \theta$ so that $r^{2}=x^{2}+y^{2}$ and $d x d y d z=r d r d \theta d z$. The cylinder is parametrized by $0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$ and $0 \leq z \leq 1$, so that

$$
\begin{aligned}
& \iiint_{\text {cylinder }}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z \\
& =\iiint_{\text {cylinder }}\left(r^{2}+z^{2}\right) \cdot r d r d \theta d z \\
& =\iiint_{\text {cylinder }}\left(r^{3}+r z^{2}\right) d r d \theta d z
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} 1 d \theta \cdot \int_{z=0}^{1}\left(\int_{r=0}^{1}\left(r^{3}+r z^{2}\right) d r\right) d z \\
& =2 \pi \cdot \int_{0}^{1}\left[\frac{r^{4}}{4}+\frac{r^{2}}{2} z^{2}\right]_{r=0}^{1} d z \\
& =2 \pi \cdot \int_{0}^{1}\left(\frac{1}{4}+\frac{1}{2} z^{2}\right) d z \\
& =2 \pi \cdot\left[\frac{1}{4} z+\frac{1}{2} \cdot \frac{z^{3}}{3}\right]_{z=0}^{1} \\
& =2 \pi \cdot\left(\frac{1}{4}+\frac{1}{2} \cdot \frac{1}{3}\right) \\
& =5 \pi / 6
\end{aligned}
$$

3. Surface Area. Consider the following parametrized surface in 3D:

$$
\mathbf{r}(u, v)=\left\langle u, v, u^{2}+u v\right\rangle \quad \text { with } 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 .
$$

(a) Compute the tangent vectors \mathbf{r}_{u} and \mathbf{r}_{v}, and the normal vector $\mathbf{r}_{u} \times \mathbf{r}_{v}$.

We have $\mathbf{r}_{u}=\langle 1,0,2 u+v\rangle, \mathbf{r}_{v}=\langle 0,1, u\rangle$, and

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}=\langle-2 u-v,-u, 1\rangle .
$$

(b) Use your answer from part (a) to set up an integral to compute the area of the surface and simplify as much as possible. [This integral is too difficult to evaluate.]

Hence the surface area is

$$
\begin{aligned}
\iint 1\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v & =\int_{0}^{1} \int_{0}^{1} \sqrt{(-2 u-v)^{2}+(-u)^{2}+1^{2}} d u d v \\
& =\int_{0}^{1} \int_{0}^{1} \sqrt{5 u^{2}+4 u v+v^{2}+1} d u d v
\end{aligned}
$$

This cannot be evaluated by hand. My computer gives 1.91994. Here is a picture:

4. Green's Theorem. Consider the vector field $\mathbf{F}(x, y)=\langle P(x, y), Q(x, y)\rangle=\left\langle-y^{3} / 3, x^{3} / 3\right\rangle$.
(a) Integrate the scalar $\operatorname{curl}(\mathbf{F})=Q_{x}-P_{y}$ over the unit disk $x^{2}+y^{2} \leq 1$.

Since $Q_{x}-P_{y}=3 x^{2} / 3-\left(-3 y^{2} / 3\right)=x^{2}+y^{2}$, this problem is the same as Problem $2(\mathrm{a})$. The answer is $\pi / 2$.
(b) Set up the line integral of the vector field \mathbf{F} around the circle $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$ for $0 \leq t \leq 2 \pi$, and simplify as much as possible. [This integral is difficult to evaluate directly, but Green's Theorem tells us that (a) and (b) have the same answer.]

The definition of the line integral gives

$$
\begin{aligned}
\int \mathbf{F} \bullet \mathbf{T} d s & =\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(t)) \bullet \frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}\left\|\mathbf{r}^{\prime}(t)\right\| d t \\
& =\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t \\
& =\int_{0}^{2 \pi} \mathbf{F}(\cos t, \sin t) \bullet\langle-\sin t, \cos t\rangle d t \\
& =\int_{0}^{2 \pi}\left\langle-\sin ^{3} t / 3, \cos ^{3} t / 3\right\rangle \bullet\langle-\sin t, \cos t\rangle d t \\
& =\int_{0}^{2 \pi}\left(\frac{\sin ^{4} t}{3}+\frac{\cos ^{4} t}{3}\right) d t .
\end{aligned}
$$

I guess this could be evaluated by hand, but it would take a while. The answer is $\pi / 2$. Here is a picture of the disk and the vector field $\mathbf{F}=\left\langle-y^{3} / 3, x^{3} / 3\right\rangle$:

5. Conservative Vector Fields. Consider the vector field $\mathbf{F}(x, y)=\langle P, Q\rangle=\left\langle x y^{2}, x^{2} y\right\rangle$. Note that this field is conservative because $Q_{x}=2 x y=P_{y}$.
(a) Find a scalar function $f(x, y)$ such that $\nabla f(x, y)=\mathbf{F}(x, y)$. [Hint: Compute the line integral of \mathbf{F} along any parametrized path ending at the point (x, y).]

Let $f(x, y)$ be the line integral of \mathbf{F} along the path $\langle x t, y t\rangle$ for $0 \leq t \leq 1$:

$$
\begin{aligned}
f(x, y) & =\int_{0}^{1} \mathbf{F}(x t, y t) \bullet\langle x t, y t\rangle^{\prime} d t \\
& =\int_{0}^{1}\left\langle(x t)(y t)^{2},(x t)^{2}(y t)\right\rangle \bullet\langle x t, y t\rangle^{\prime} d t \\
& =\int_{0}^{1}\left\langle x y^{2} t^{3}, x^{2} y t^{3}\right\rangle \bullet\langle x, y\rangle d t \\
& =\int_{0}^{1}\left(x^{2} y^{2} t^{3}+x^{2} y^{2} t^{3}\right) d t \\
& =2 x^{2} y^{2} \cdot \int_{0}^{1} t^{3} d t \\
& =2 x^{2} y^{2} \cdot(1 / 4) \\
& =x^{2} y^{2} / 2 .
\end{aligned}
$$

Then we check that $\nabla f=\nabla\left(x^{2} y^{2} / 2\right)=\left\langle x y^{2}, x^{2} y\right\rangle=\mathbf{F}$ as desired.
(b) Use your answer from part (a) and the Fundamental Theorem of Line Integrals to compute the line integral of \mathbf{F} along the path $\mathbf{r}(t)=\langle 1+t, \sqrt{t}\rangle$ for $1 \leq t \leq 2$.

Consider the path $\mathbf{r}(t)=\langle 1+t, \sqrt{t}\rangle$. (This is different from the path in part (a).) Since $\mathbf{F}=\nabla f$, the Fundamental Theorem of Line Integrals tells us that

$$
\begin{aligned}
\int \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t & =\int_{1}^{2} \nabla f(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t \\
& =f(\mathbf{r}(2))-f(\mathbf{r}(1)) \\
& =f(3, \sqrt{2})-f(2,1) \\
& =(3)^{2}(\sqrt{2})^{2} / 2-(2)^{2}(1)^{2} / 2 \\
& =9-2 \\
& =7 .
\end{aligned}
$$

(We could also compute this without using the Fundamental Theorem, but it would take longer.) Here is a picture of the vector field $\mathbf{F}=\left\langle x y^{2}, x^{2} y\right\rangle$ and the path \mathbf{r} :

Problem 1. Double Integrals. Use polar coordinates to integrate the scalar function $f(x, y)=1-x^{2}-y^{2}$ over the unit disk $x^{2}+y^{2} \leq 1$.

Polar coordinates are defined by $x=r \cos \theta$ and $y=r \sin \theta$, with $d x d y=r d r d \theta$. This is a good choice because the function f and the domain of integration both have rotational symmetry. To be specific, we have $f=1-x^{2}-y^{2}=1-r^{2}$, and the domain is parametrized by $0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$. Hence the integral is

$$
\begin{aligned}
\iint_{\text {disk }} f & =\iint_{\text {disk }}\left(1-r^{2}\right) r d r d \theta \\
& =\int_{0}^{2 \pi} d \theta \cdot \int_{0}^{1}\left(r-r^{3}\right) d r \\
& =2 \pi \cdot\left[\frac{1}{2} r-\frac{1}{4} r^{4}\right]_{0}^{1} \\
& =2 \pi\left[\frac{1}{2}-\frac{1}{4}\right] \\
& =\frac{\pi}{2} .
\end{aligned}
$$

Remark: If we want, we could interpret this as the volume between the z-axis and the parabolic dome $z=1-x^{2}-y^{2}$:

Problem 2. Triple Integrals.
(a) Find a parametrization for the tetrahedron in \mathbb{R}^{3} with vertices

$$
(0,0,0), \quad(1,0,0), \quad(0,1,0), \quad \text { and } \quad(0,0,1) .
$$

(b) Use your parametrization to compute the volume of the tetrahedron.
(a): If we choose x, then y, then z, we obtain the following parametrization:

$$
\begin{aligned}
& 0 \leq x \leq 1 \\
& 0 \leq y \leq 1-x \\
& 0 \leq z \leq 1-x-y
\end{aligned}
$$

Here is a picture:

(b): The volume is

$$
\begin{aligned}
\iiint_{\text {tetrahedron }} 1 d x d y d z & =\int_{0}^{1}\left(\int_{0}^{1-x}\left(\int_{0}^{1-x-y} d z\right) d y\right) d x \\
& =\int_{0}^{1}\left(\int_{0}^{1-x}(1-x-y) d y\right) d x \\
& =\int_{0}^{1}\left[(1-x) y-\frac{1}{2} y^{2}\right]_{0}^{1-x} d x \\
& =\int_{0}^{1}\left((1-x)(1-x)-\frac{1}{2}(1-x)^{2}\right) d x \\
& =\int_{0}^{1} \frac{1}{2}(1-x)^{2} d x \\
& =\left[-\frac{1}{6}(1-x)^{3}\right]_{0}^{1} \\
& =\frac{1}{6} .
\end{aligned}
$$

Problem 1. Surface Area. Compute the area of the parametrized surface

$$
\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle=\left\langle u, u, v^{2}\right\rangle
$$

for $0 \leq u \leq 1$ and $0 \leq v \leq 1$.
First we compute the stretch factor:

$$
\begin{aligned}
\mathbf{r}_{u} & =\langle 1,1,0\rangle, \\
\mathbf{r}_{v} & =\langle 0,0,2 v\rangle, \\
\mathbf{r}_{u} \times \mathbf{r}_{v} & =\langle 2 v,-2 v, 0\rangle, \\
\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| & =\sqrt{4 v^{2}+4 v^{2}} \\
& =\sqrt{8 v^{2}} \\
& =2 \sqrt{2} v \text { because } v \geq 0 .
\end{aligned}
$$

Then we compute the area:

$$
\begin{aligned}
\iint 1 d A & =\iint\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v \\
& =\iint 2 \sqrt{2} v d u d v \\
& =2 \sqrt{2} \cdot \int_{0}^{1} d u \cdot \int_{0}^{1} v d v \\
& =2 \sqrt{2}(1)(1 / 2) \\
& =\sqrt{2} .
\end{aligned}
$$

Remark: It's really hard to find a surface whose area is computable by hand. This surface is secretly just a rectangle with base $\sqrt{2}$ and height 1 :

Problem 2. Line Integrals. Integrate the vector field ${ }^{1} \mathbf{F}(x, y)=\langle-y, x\rangle$ around the unit circle $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$ for $0 \leq t \leq 2 \pi$.

From the definition we have

$$
\begin{aligned}
\int_{\text {circle }} \mathbf{F} \bullet \mathbf{T} & =\int \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t \\
& =\int \mathbf{F}(\cos t, \sin t) \bullet\langle-\sin t, \cos t\rangle d t \\
& =\int\langle-\sin t, \cos t\rangle \bullet\langle-\sin t, \cos t\rangle d t \\
& =\int\left[\sin ^{2} t+\cos ^{2} t\right] d t \\
& =\int_{0}^{2 \pi} 1 d t \\
& =2 \pi .
\end{aligned}
$$

Remark: Since this integral is not zero, we conclude that the vector field \mathbf{F} is not conservative.

Problem 3. Conservative Vector Fields. Find a scalar field $f(x, y)$ such that

$$
\nabla f(x, y)=\langle 2 x+2 y, 2 x+2 y\rangle
$$

We will use the Fundamental Theorem of Line Integrals (or whatever you want to call it). Consider the path $\mathbf{r}(t)=\langle x t, y t\rangle$ for t from 0 to 2π. Then we have

$$
\begin{aligned}
f(x, y)-f(0,0) & =f(\mathbf{r}(1))-f(\mathbf{r}(0)) \\
& =\int_{0}^{1} \nabla f(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t \\
& =\int_{0}^{1}\langle 2 x t+2 y t, 2 x t+2 y t\rangle \bullet\langle x, y\rangle d t \\
& =\int_{0}^{1}[(2 x t+2 y t) x+(2 x t+2 y t) y] d t \\
& =\int_{0}^{1}\left(2 x^{2}+4 x y+2 y^{2}\right) t d t \\
& =\left(2 x^{2}+4 x y+2 y^{2}\right) \cdot \int_{0}^{1} t d t \\
& =\left(2 x^{2}+4 x y+2 y^{2}\right) \cdot(1 / 2) \\
& =x^{2}+2 x y+y^{2} .
\end{aligned}
$$

We conclude that $f(x, y)=x^{2}+2 x y+y^{2}$, plus an arbitrary constant. Check:

$$
\begin{aligned}
\left(x^{2}+2 x y+y^{2}\right)_{x} & =2 x+2 y+0, \\
\left(x^{2}+2 x y+y^{2}\right)_{y} & =0+2 x+2 y .
\end{aligned}
$$

[^0]Quit 4 Solutions:

1. Use cartesian coordinates to integrate the function $f(x, y)=x \sin (y)$ over the rectangle $0 \leqslant x \leqslant 3,0 \leqslant y \leqslant \pi$.

$$
\begin{aligned}
& \iint_{0}^{3} x \sin (y) d x d y \\
= & \int_{0}^{3} x d x \int_{0}^{\pi} \sin (y) d y \\
= & \left(\frac{1}{2} x^{2}\right)_{0}^{3} \cdot(-\cos (y))_{0}^{\pi} \\
= & \frac{1}{2} \cdot 9\left(-\cos (\pi)+\cos ^{-1}(0)\right) \\
= & 9
\end{aligned}
$$

If $f=$ "height" then we can think of this integral as the volume of the region above the rectangle and below the surface $z=x \sin (y)$:

2. Use spherical coordinates to find the volume of the region above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $z=\sqrt{1-x^{2}-y^{2}}$:

we have $0 \leq \theta \leq 2 \pi$ \& $0 \leq \varphi \leq \pi / 4$.
The sphere has radius 1 and is centered at the origin, so $0 \leq e \leq 1$.

Therefore the volume is

$$
\begin{aligned}
\text { VoL } & =\iiint d V \\
& =\iiint e^{2} \sin \varphi d \rho d \theta d \varphi \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{1} e^{2} d \rho \int_{0}^{\pi / 4} \sin \varphi d \varphi \\
& =2 \pi \cdot \frac{1}{3} \cdot\left(-\cos \left(\frac{\pi}{4}\right)+\cos (0)\right) \\
& =\frac{2 \pi}{3}(1-\sqrt{2} / 2)
\end{aligned}
$$

[About 30% of the volume of the full hemisphere, which is $\frac{2}{3} \pi$.]

Quiz 5 Solutions:

1. Consider $f(x, y, z)=x y+z$.
compute the integral of the gradient vector field $\vec{F}=\nabla f$ along the pith $\vec{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ from $t=0$ to $t=1$.

Easy Way (Fundamental Theorem of (line integrals):

$$
\begin{aligned}
& \int_{0}^{1} \nabla f(\vec{r}(t)) \circ r^{\prime}(t) d t \\
&=f(\vec{r}(1))-f(\vec{r}(0)) \\
&=f(1,1,1)-f(0,0,0) \\
&=(1 \cdot 1+1)-(0.0+0) \\
&=2 .
\end{aligned}
$$

Hard Way: First compute

$$
\nabla f(x, y, z)=\langle y, x, 1\rangle,
$$

$$
\begin{aligned}
\nabla f(\vec{r}(t)) & =\left\langle t^{2}, t, 1\right\rangle, \quad \text { and } \\
\vec{r}^{\prime}(t) & =\left\langle 1,2 t, 3 t^{2}\right\rangle .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \int_{0}^{1} \nabla f(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t \\
= & \int_{0}^{1}\left\langle t^{2}, t, 1\right\rangle 0\left\langle 1,2 t, 3 t^{2}\right\rangle d t \\
= & \int_{0}^{1}\left(t^{2}+2 t^{2}+3 t^{2}\right) d t \\
= & \int_{0}^{1} 6 t^{2} d t \\
= & 6\left(\frac{1}{3} t^{3}\right)_{0}^{1}=2
\end{aligned}
$$

2. Compute the circlutation of

$$
\vec{F}(x, y)=\left\langle-\frac{y}{2}+e^{x}, \frac{x}{2}-\ln (y)\right\rangle
$$

around the circle $\vec{F}(t)=\langle\cos t, \sin t\rangle$ from $t=0$ to $t=2 \pi$.

Easy Way (Green's Theorem):
First compute the curl

$$
Q_{x}-P_{y}=\left(\frac{1}{2}+0\right)-\left(-\frac{1}{2}+0\right)=1
$$

If D is the interior of the unit circle C then Gran's Theorem suns

$$
\begin{aligned}
\oint_{C} \vec{F} \cdot \vec{T} d s & =\int_{D}(u \cot (\vec{F}) d A \\
& =\int_{D} d A \\
& =\text { area of unit circle } \\
& =\pi .
\end{aligned}
$$

Hard Way: Since

$$
\vec{F}(\vec{r}(t))=\left\langle-\frac{\sin t}{2}+e^{\cos t}, \frac{\cos t}{2}-\ln (\sin t)\right\rangle
$$

and

$$
\vec{r}^{\prime}(t)=\langle-\sin t, \cos t\rangle,
$$

we have

$$
\begin{aligned}
& \int_{0}^{2 \pi} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t \\
& =\int_{0}^{2 \pi}\left[\frac{\sin ^{2} t}{2}-\sin t e^{\cos t}\right. \\
& \left.+\frac{\cos ^{2} t}{2}-\cos t \ln (\sin t)\right] d t
\end{aligned}
$$

\therefore hard to do by hand
$=\pi$ (via computer)

[^0]: ${ }^{1}$ That is, integrate the component of \mathbf{F} that is tangent to the curve. You know, the usual thing.

