
Math 310 Exam 2
Fall 2023 Fri Dec 1

No electronic devices are allowed. No collaboration is allowed. There are 5 pages and each
page is worth 6 points, for a total of 30 points.

1. Integrating a Scalar Over a Rectangle.

(a) Integrate f(x, y) = x+ y over the rectangle with −1 ≤ x ≤ 2 and 1 ≤ y ≤ 3.

∫∫
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∫ 3

y=1
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=
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=
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)
= 15.

Remark: We could view this as the volume of the region above the rectangle in the
x, y-plane with −1 ≤ x ≤ 2 and 1 ≤ y ≤ 3 and below the surface z = x+ y.

(b) Compute the volume of the 3D region above the square in the x, y-plane with
0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, and below the surface z = x2y.

We can view x2y dxdy as the volume of a skinny column above the point (x, y, 0),
where x2y is the height of the column and dxdy are the area of the base. Hence

Volume =

∫∫
(skinny columns)

=

∫∫
x2y dxdy

=

∫ 1

0
x2 dx ·

∫ 1

0
y dy

=

(
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3
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3

)
·
(
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2
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2

)
= 1/6.

Alternatively, some students parametrized the 3D region by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
and 0 ≤ z ≤ x2y and then computed

Volume =

∫∫∫
1 dxdydz



=

∫ 1

0

(∫ 1

0

(∫ x2y

0
1 dz

)
dx

)
dy

=

∫ 1

0

(∫ 1

0
x2y dx

)
dy

= same as before.

Here is a picture of the 3D region:

2. Polar and Cylindrical Coordinates.

(a) Use polar coordinates to integrate f(x, y) = x2 + y2 over the unit disk x2 + y2 ≤ 1.

Let x = r cos θ and y = r sin θ so that x2 + y2 = r2 and dxdy = r drdθ. The unit
disk is parametrized by 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π, so that∫∫

disk
(x2 + y2) dxdy =

∫∫
disk

r2 · r drdθ

=

∫ 2π

0
1 dθ ·

∫ 1

0
r3 dr

= 2π ·
(
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4
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4

)
= π/2.

(b) Use cylindrical coordinates to integrate f(x, y, z) = x2 + y2 + z2 over the cylinder
satisfying x2 + y2 ≤ 1 and 0 ≤ z ≤ 1.

Let x = r cos θ and y = r sin θ so that r2 = x2 + y2 and dxdydz = r drdθdz. The
cylinder is parametrized by 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π and 0 ≤ z ≤ 1, so that∫∫∫

cylinder
(x2 + y2 + z2) dxdydz

=

∫∫∫
cylinder

(r2 + z2) · r drdθdz

=

∫∫∫
cylinder

(r3 + rz2) drdθdz



=

∫ 2π

0
1 dθ ·
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)
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]1
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)
= 5π/6.

3. Surface Area. Consider the following parametrized surface in 3D:

r(u, v) = 〈u, v, u2 + uv〉 with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.

(a) Compute the tangent vectors ru and rv, and the normal vector ru × rv.

We have ru = 〈1, 0, 2u+ v〉, rv = 〈0, 1, u〉, and

ru × rv = 〈−2u− v,−u, 1〉.

(b) Use your answer from part (a) to set up an integral to compute the area of the
surface and simplify as much as possible. [This integral is too difficult to evaluate.]

Hence the surface area is∫∫
1‖ru × rv‖ dudv =

∫ 1

0

∫ 1

0

√
(−2u− v)2 + (−u)2 + 12 dudv

=

∫ 1

0

∫ 1

0

√
5u2 + 4uv + v2 + 1 dudv.

This cannot be evaluated by hand. My computer gives 1.91994. Here is a picture:

4. Green’s Theorem. Consider the vector field F(x, y) = 〈P (x, y), Q(x, y)〉 = 〈−y3/3, x3/3〉.



(a) Integrate the scalar curl(F) = Qx − Py over the unit disk x2 + y2 ≤ 1.

Since Qx−Py = 3x2/3− (−3y2/3) = x2 + y2, this problem is the same as Problem
2(a). The answer is π/2.

(b) Set up the line integral of the vector field F around the circle r(t) = 〈cos t, sin t〉 for
0 ≤ t ≤ 2π, and simplify as much as possible. [This integral is difficult to evaluate
directly, but Green’s Theorem tells us that (a) and (b) have the same answer.]

The definition of the line integral gives∫
F •T ds =

∫ 2π

0
F(r(t)) • r′(t)

‖r′(t)‖
‖r′(t)‖ dt

=

∫ 2π

0
F(r(t)) • r′(t) dt

=

∫ 2π

0
F(cos t, sin t) • 〈− sin t, cos t〉 dt

=

∫ 2π

0
〈− sin3 t/3, cos3 t/3〉 • 〈− sin t, cos t〉 dt

=

∫ 2π

0

(
sin4 t

3
+

cos4 t

3

)
dt.

I guess this could be evaluated by hand, but it would take a while. The answer is
π/2. Here is a picture of the disk and the vector field F = 〈−y3/3, x3/3〉:

5. Conservative Vector Fields. Consider the vector field F(x, y) = 〈P,Q〉 = 〈xy2, x2y〉.
Note that this field is conservative because Qx = 2xy = Py.

(a) Find a scalar function f(x, y) such that ∇f(x, y) = F(x, y). [Hint: Compute the
line integral of F along any parametrized path ending at the point (x, y).]



Let f(x, y) be the line integral of F along the path 〈xt, yt〉 for 0 ≤ t ≤ 1:

f(x, y) =

∫ 1

0
F(xt, yt) • 〈xt, yt〉′ dt

=

∫ 1

0
〈(xt)(yt)2, (xt)2(yt)〉 • 〈xt, yt〉′ dt

=

∫ 1

0
〈xy2t3, x2yt3〉 • 〈x, y〉 dt

=

∫ 1

0

(
x2y2t3 + x2y2t3

)
dt

= 2x2y2 ·
∫ 1

0
t3 dt

= 2x2y2 · (1/4)

= x2y2/2.

Then we check that ∇f = ∇(x2y2/2) = 〈xy2, x2y〉 = F as desired.

(b) Use your answer from part (a) and the Fundamental Theorem of Line Integrals to
compute the line integral of F along the path r(t) = 〈1 + t,

√
t〉 for 1 ≤ t ≤ 2.

Consider the path r(t) = 〈1 + t,
√
t〉. (This is different from the path in part (a).)

Since F = ∇f , the Fundamental Theorem of Line Integrals tells us that∫
F(r(t)) • r′(t) dt =

∫ 2

1
∇f(r(t)) • r′(t) dt

= f(r(2))− f(r(1))

= f(3,
√

2)− f(2, 1)

= (3)2(
√

2)2/2− (2)2(1)2/2

= 9− 2

= 7.

(We could also compute this without using the Fundamental Theorem, but it would
take longer.) Here is a picture of the vector field F = 〈xy2, x2y〉 and the path r:



Math 211 Summer 2022
Quiz 4 Drew Armstrong

Problem 1. Double Integrals. Use polar coordinates to integrate the scalar function
f(x, y) = 1 − x2 − y2 over the unit disk x2 + y2 ≤ 1.

Polar coordinates are defined by x = r cos θ and y = r sin θ, with dxdy = rdrdθ. This is a good
choice because the function f and the domain of integration both have rotational symmetry.
To be specific, we have f = 1−x2−y2 = 1− r2, and the domain is parametrized by 0 ≤ r ≤ 1
and 0 ≤ θ ≤ 2π. Hence the integral is∫∫

disk
f =

∫∫
disk

(1 − r2)rdrdθ

=

∫ 2π

0
dθ ·

∫ 1

0
(r − r3) dr

= 2π ·
[

1

2
r − 1

4
r4
]1
0

= 2π

[
1

2
− 1

4

]
=
π

2
.

Remark: If we want, we could interpret this as the volume between the z-axis and the parabolic
dome z = 1 − x2 − y2:



Problem 2. Triple Integrals.

(a) Find a parametrization for the tetrahedron in R3 with vertices

(0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1).

(b) Use your parametrization to compute the volume of the tetrahedron.

(a): If we choose x, then y, then z, we obtain the following parametrization:

0 ≤ x ≤ 1,
0 ≤ y ≤ 1 − x,
0 ≤ z ≤ 1 − x− y.

Here is a picture:

(b): The volume is∫∫∫
tetrahedron

1 dxdydz =

∫ 1

0

(∫ 1−x

0

(∫ 1−x−y

0
dz

)
dy

)
dx

=

∫ 1

0

(∫ 1−x

0
(1 − x− y) dy

)
dx

=

∫ 1

0

[
(1 − x)y − 1

2
y2
]1−x
0

dx

=

∫ 1

0

(
(1 − x)(1 − x) − 1

2
(1 − x)2

)
dx

=

∫ 1

0

1

2
(1 − x)2 dx

=

[
−1

6
(1 − x)3

]1
0

=
1

6
.



Math 211 Summer 2022
Quiz 5 Drew Armstrong

Problem 1. Surface Area. Compute the area of the parametrized surface

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 = 〈u, u, v2〉
for 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.

First we compute the stretch factor:

ru = 〈1, 1, 0〉,
rv = 〈0, 0, 2v〉,

ru × rv = 〈2v,−2v, 0〉,

‖ru × rv‖ =
√

4v2 + 4v2

=
√

8v2

= 2
√

2v because v ≥ 0.

Then we compute the area: ∫∫
1 dA =

∫∫
‖ru × rv‖ dudv

=

∫∫
2
√

2v dudv

= 2
√

2 ·
∫ 1

0
du ·

∫ 1

0
v dv

= 2
√

2(1)(1/2)

=
√

2.

Remark: It’s really hard to find a surface whose area is computable by hand. This surface is
secretly just a rectangle with base

√
2 and height 1:



Problem 2. Line Integrals. Integrate the vector field1 F(x, y) = 〈−y, x〉 around the unit
circle r(t) = 〈cos t, sin t〉 for 0 ≤ t ≤ 2π.

From the definition we have∫
circle

F •T =

∫
F(r(t)) • r′(t) dt

=

∫
F(cos t, sin t) • 〈− sin t, cos t〉 dt

=

∫
〈− sin t, cos t〉 • 〈− sin t, cos t〉 dt

=

∫ [
sin2 t+ cos2 t

]
dt

=

∫ 2π

0
1 dt

= 2π.

Remark: Since this integral is not zero, we conclude that the vector field F is not conservative.

Problem 3. Conservative Vector Fields. Find a scalar field f(x, y) such that

∇f(x, y) = 〈2x+ 2y, 2x+ 2y〉.

We will use the Fundamental Theorem of Line Integrals (or whatever you want to call it).
Consider the path r(t) = 〈xt, yt〉 for t from 0 to 2π. Then we have

f(x, y)− f(0, 0) = f(r(1))− f(r(0))

=

∫ 1

0
∇f(r(t)) • r′(t) dt

=

∫ 1

0
〈2xt+ 2yt, 2xt+ 2yt〉 • 〈x, y〉 dt

=

∫ 1

0
[(2xt+ 2yt)x+ (2xt+ 2yt)y] dt

=

∫ 1

0
(2x2 + 4xy + 2y2)t dt

= (2x2 + 4xy + 2y2) ·
∫ 1

0
t dt

= (2x2 + 4xy + 2y2) · (1/2)

= x2 + 2xy + y2.

We conclude that f(x, y) = x2 + 2xy + y2, plus an arbitrary constant. Check:

(x2 + 2xy + y2)x = 2x+ 2y + 0,

(x2 + 2xy + y2)y = 0 + 2x+ 2y.

1That is, integrate the component of F that is tangent to the curve. You know, the usual thing.



 







 








