1. Counting Words.

(a) Tell me the number of words of length 5 that can be made from the alphabet $\{a, b, c\}$.

$$
\#(\text { words })=\underbrace{3}_{1 \text { st letter }} \times \underbrace{3}_{\text {2nd letter }} \times \underbrace{3}_{3 \text { rd letter }} \times \underbrace{3}_{\text {4th letter }} \times \underbrace{3}_{5 \text { th letter }}=3^{5}=243 .
$$

(b) How many of the words from (a) contain 3 copies of $a, 1$ copy of b and 1 copy of c ?

$$
\binom{5}{3,1,1}=\frac{5!}{3!1!1!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1}=20 .
$$

(c) How many of the words from (a) contain 3 copies of a ? [Hint: You need to add over all possible numbers of b 's and c 's.]

$$
\binom{5}{3,2,0}+\binom{5}{3,1,1}+\binom{5}{3,0,2}=10+20+10=40 .
$$

2. Algebraic vs Counting Proof. For all integers $n \geq 2$ we have the following identity:

$$
n^{2}=2\binom{n}{2}+n
$$

(a) Give an algebraic proof of the identity.

Proof.

$$
2\binom{n}{2}+n=2 \frac{n(n-1)}{2}+n=n(n-1)+n=\left(n^{2}-n\right)+n=n^{2} .
$$

(b) Give a counting proof of the identity. [Hint: Count words of length 2.]

Proof. Let W be the set of words of length 2 from an alphabet of size n. On the one hand we have

$$
\# W=n^{2}
$$

On the other hand, let $A \subseteq W$ be the words with 2 different letters and let $B \subseteq W$ be the words with the same letter twice, so $\# W=\# A+\# B$. Then we have

$$
\# A=\underbrace{\binom{n}{2}}_{\text {choose two letters }} \times \underbrace{2}_{\text {put them in order }} \quad \text { and } \quad \# B=\underbrace{n}_{\text {choose one letter }} .
$$

