1. Base b Arithmetic.

Convert the decimal number 111 into binary.
Set $q:=111$ and then repeatedly divide the quotient by 2 :

$$
\begin{aligned}
\mathbf{1 1 1 1} & =\mathbf{5 5} \cdot 2+1 \\
\mathbf{5 5} & =\mathbf{2 7} \cdot 2+1 \\
\mathbf{2 7} & =\mathbf{1 3} \cdot 2+1 \\
\mathbf{1 3} & =\mathbf{6} \cdot 2+1 \\
\mathbf{6} & =\mathbf{3} \cdot 2+0 \\
\mathbf{3} & =\mathbf{1} \cdot 2+1 \\
\mathbf{1} & =\mathbf{0} \cdot 2+1
\end{aligned}
$$

We conclude that $111=(1101111)_{2}$.
2. Induction Again. Fix some number $r \neq 1$.

Use induction to prove that $r^{0}+r^{1}+\cdots+r^{n}=\left(r^{n+1}-1\right) /(r-1)$ for all $n \geq 0$.
Proof. For the base case $n=0$ we observe that

$$
r^{0}=\frac{r^{1}-1}{r-1} \quad \text { is a true statement. }
$$

Now fix some integer $n \geq 0$ and assume for induction that

$$
r^{0}+r^{1}+\cdots+r^{n}=\frac{r^{n+1}-1}{r-1} \quad \text { is a true statement. }
$$

Then we also have

$$
\begin{aligned}
r^{0}+r^{1}+\cdots+r^{n+1} & =r^{0}+r^{1}+\cdots+r^{n}+r^{n+1} \\
& =\frac{r^{n+1}-1}{r-1}+r^{n+1} \\
& =\frac{r^{n+1}-1}{r-1}+\frac{r^{n+1}(r-1)}{r-1} \\
& =\frac{r^{n+1}-1}{r-1}+\frac{r^{n+2}-r^{n+1}}{r-1} \\
& =\frac{r^{n+1}-1+r^{n+2}-r^{n+1}}{r-1} \\
& =\frac{r^{n+2}-1}{r-1} .
\end{aligned}
$$

Hence the statement is true for $n+1$.

2. Division With Remainder.

(a) Accurately State the Division Theorem.

For all integers $a, b \in \mathbb{Z}$ with $b>0$, there exist unique integers $q, r \in \mathbb{Z}$ such that

$$
\left\{\begin{array}{l}
a=q b+r, \\
0 \leq r<b .
\end{array}\right.
$$

(b) Use the Euclidean algorithm to compute $\operatorname{gcd}(100,23)$.

First we divide 100 by 23 to get sone remainder r. Then we replace the pair $(100,23)$ by $(23, r)$ and repeat:

$$
\begin{aligned}
\mathbf{1 0 0} & =4 \cdot \mathbf{2 3} & +\mathbf{8} \\
\mathbf{2 3} & =2 \cdot \mathbf{8} & +\mathbf{7} \\
\mathbf{8} & =1 \cdot \mathbf{7} & +\mathbf{1} \\
\mathbf{7} & =7 \cdot \mathbf{1} & +\mathbf{0}
\end{aligned}
$$

We conclude that $\operatorname{gcd}(100,23)=1$.
(c) Apply your work from (b) to find the continued fraction expansion of 100/23.

The sequence of quotients $(4,2,1,7)$ from part (b) tells us that

$$
\frac{100}{23}=4+\frac{1}{2+\frac{1}{1+\frac{1}{7}}} .
$$

