1. Venn Diagrams. Let $A, B, C \subseteq U$ be subsets of the universal set.
(a) Draw a Venn diagram to show the set $\left(A \cap B^{\prime}\right) \cup\left(B \cap A^{\prime}\right)$.

$\left(A \cap B^{\prime}\right) \cup\left(B \cap A^{\prime}\right)$
(b) Draw a Venn diagram to show the set $(A \cup B) \cap C^{\prime}$.

(c) Tell the name of the following set (many correct answers):

The shortest name of the set is $A \cup(B \cap C)$. The disjunctive normal form is

$$
(A \cap B \cap C) \cup\left(A \cap B^{\prime} \cap C\right) \cup\left(A \cap B \cap C^{\prime}\right) \cup\left(A \cap B^{\prime} \cap C^{\prime}\right) \cup\left(A^{\prime} \cap B \cap C\right) .
$$

Or we can compute the disjunctive normal form of the unshaded region. Then we take the complement and apply de Morgan's law:

$$
\begin{aligned}
& {\left[\left(A^{\prime} \cap B^{\prime} \cap C\right) \cup\left(A^{\prime} \cap B \cap C^{\prime}\right) \cup\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right)\right]^{\prime}} \\
& =\left(A^{\prime} \cap B^{\prime} \cap C\right)^{\prime} \cap\left(A^{\prime} \cap B \cap C^{\prime}\right)^{\prime} \cap\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right)^{\prime} \\
& =\left(A \cup B \cup C^{\prime}\right) \cap\left(A \cup B^{\prime} \cup C\right) \cap(A \cup B \cup C) .
\end{aligned}
$$

The resulting expression is called the conjunctive normal form.
2. Boolean Functions. Consider the Cartesian product set:

$$
\{T, F\}^{n}:=\underbrace{\{T, F\} \times\{T, F\} \times \cdots \times\{T, F\}}_{n \text { times }}
$$

(a) Tell me the number of elements of the set $\{T, F\}^{n}$.

$$
\#\{T, F\}^{n}=\underbrace{\#\{T, F\} \times \#\{T, F\} \times \cdots \times \#\{T, F\}}_{n \text { times }}=\underbrace{2 \times 2 \times \cdots \times 2}_{n \text { times }}=2^{n}
$$

(b) Count the functions $f:\{T, F\}^{2} \rightarrow\{T, F\}$ with two inputs and one output.

The number of functions from A and B is $(\# B)^{\# A}$. Hence the number of functions from $\{T, F\}^{2}$ to $\{T, F\}$ is

$$
(\#\{T, F\})^{\left(\#\{T, F\}^{2}\right)}=2^{\left(2^{2}\right)}=2^{4}=16
$$

(c) Fill in the arrows for the function $f(P, Q)=(P \wedge \neg Q) \vee(Q \wedge \neg P)$:

Remark: This is just one of the 16 Boolean functions with two inputs and one output. It is commonly called XOR. This function also appeared in Problem 1(a).

