Problem 1.
(a) Draw Pascal's Triangle down to the 7th row.

(b) Use the triangle to expand $(1+x)^{7}$.

$$
(1+x)^{7}=1+7 x+21 x^{2}+35 x^{3}+35 x^{4}+21 x^{5}+7 x^{6}+x^{7}
$$

(c) Use the triangle to evaluate the following sum:

$$
\begin{aligned}
\sum_{k=0}^{4}(-1)^{k}\binom{7}{k} & =\binom{7}{0}-\binom{7}{1}+\binom{7}{2}-\binom{7}{3}+\binom{7}{4} \\
& =1-7+21-35+35 \\
& =15
\end{aligned}
$$

Problem 2. Let the sequence $S_{0}, S_{1}, S_{2}, \ldots$ be defined by the following initial condition and recurrence relation:

$$
S_{n}:= \begin{cases}1 & \text { if } n=0 \\ S_{n-1}+2^{n-1} & \text { if } n \geq 1\end{cases}
$$

(a) Fill in the following table:

n	0	1	2	3	4	5
S_{n}	1	2	4	8	16	32

(b) Try to guess a simple formula for S_{n}.

I guess that $S_{n}=2^{n}$ for all $n \geq 0$.
(c) Use induction to prove that your formula is correct.

- Base Case. If $n=0$ then we have $S_{0}=1=2^{0}$.
- Induction Step. Now fix some $n \geq 0$ and assume for induction that $S_{n}=2^{n}$. In this case we want to prove that $S_{n+1}=2^{n+1}$. Indeed, we observe that

$$
\begin{aligned}
S_{n+1} & =S_{n}+2^{n} \\
& =2^{n}+2^{n} \\
& =2 \cdot 2^{n} \\
& =2^{n+1} .
\end{aligned}
$$

