1. The following table shows that the Fibonacci sequence can be run in both directions:

$$
\begin{array}{c|rrrrrrrrr}
n & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
\hline F_{n} & -3 & 2 & -1 & 1 & 0 & 1 & 1 & 2 & 3
\end{array}
$$

Use induction to prove that $F_{-n}=(-1)^{n+1} F_{n}$ for all $n \geq 0$.
2. For all integers $n \geq k>0$ we have $k\binom{n}{k}=n\binom{n-1}{k-1}$.
(a) Prove this using pure algebra.
(b) Prove this using a counting argument. [Hint: Choose a committee of k people from n people. The committee has a president.]
3. Count the possibilities in each case.
(a) A phone number consists of 7 digits.
(b) Suppose that a license plate consists of 3 digits followed by 4 letters ${ }^{1}$
(c) A poker hand consists of 5 unordered cards from a standard deck of 52 .
(d) Solutions $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in \mathbb{N}$ to the equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=10$.
4. For all integers $r, g, n \geq 0$ we have the following identity:

$$
\sum_{k=0}^{n}\binom{r}{k}\binom{g}{n-k}=\binom{r+g}{n}
$$

(a) Prove this identity. [Hint: There are r red balls and g green balls in an urn. You reach in and grab n balls (unordered and without repetition). Count the number of possibilities in two different ways.]
(b) Use the result of (a) to prove that $\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n}$.
5. The trinomial coefficient $\binom{n}{i, j, k}=\frac{n!}{i!j!k!}$ is the number of words of length n from the alphabet $\{a, b, c\}$ using i copies of a, j copies of b and k copies of c. These numbers satisfy the trinomial recurrence:

$$
\binom{n}{i, j, k}=\binom{n-1}{i-1, j, k}+\binom{n-1}{i, j-1, k}+\binom{n-1}{i, j, k-1} .
$$

(a) Prove the trinomial recurrence using pure algebra.
(b) Prove the trinomial recurrence using a counting argument.
6. Let $k \geq 0$ be an integer. Then for any number z the following formula makes sense:

$$
\binom{z}{k}:=\frac{1}{k!} \cdot z(z-1)(z-2) \cdots(z-k+1) .
$$

Isaac Newton proved that for all numbers z, x with $|x|<1$ the following series converges:

$$
(1+x)^{z}=\binom{z}{0}+\binom{z}{1} x+\binom{z}{2} x^{2}+\binom{z}{3} x^{3}+\cdots .
$$

(a) For all integers $n, k \geq 0$ show that $\binom{-n}{k}=(-1)^{k}\binom{n+k-1}{k}$.
(b) Use part (a) to obtain the power series expansion of $(1+x)^{-2}$.

[^0]
[^0]: ${ }^{1}$ Assume that the alphabet has 26 letters.

