1. Use a truth table to verify de Morgan's laws:

$$\neg (P \land Q) = \neg P \lor \neg Q \quad \text{and} \quad \neg (P \lor Q) = \neg P \land \neg Q.$$

2. Compute the disjunctive normal form of the following Boolean function. Use this to draw a circuit diagram for the function.

P	Q	R	f(P,Q,R)
T	T	T	F
T	T	F	T
T	F	T	T
T	F	F	F
F	T	T	F
F	T	F	T
F	F	T	F
F	F	F	T

3. Let B be a Boolean algebra. For all $P, Q \in B$ we define the Sheffer stroke as follows:

$$P \uparrow Q := \neg (P \land Q).$$

Use abstract Boolean algebra to prove the following identities. Don't use truth tables!

(a) $\neg P = P \uparrow P$ (b) $P \lor Q = (P \uparrow P) \uparrow (Q \uparrow Q)$ (c) $P \land Q = (P \uparrow Q) \uparrow (P \uparrow Q)$

In logic the Sheffer stroke is called NAND. The formulas above demonstrate that any circuit can be built entirely from NAND gates. This is how solid state drives work.

4. Let $f: S \to T$ be a function of finite sets and for all $t \in T$ define the number

$$d(t) := \#\{s \in S : f(s) = t\}.$$

We say that f is injective if $d(t) \leq 1$ for all $t \in T$, surjective if $d(t) \geq 1$ for all $t \in T$ and bijective if d(t) = 1 for all T.

- (a) If $f: S \to T$ is injective prove that $\#S \leq \#T$.
- (b) If $f: S \to T$ is subjective prove tha $\#S \ge \#T$.
- (c) If $f: S \to T$ is bijective prove that #S = #T.

[Hint: Observe that $\sum_{t \in T} d(t) = \#S.$]

5. Let S and T be finite sets. Explain why there are $\#T^{\#S}$ different functions from S to T.

- **6.** (a) Explicitly write down all of the subsets of $\{1, 2, 3\}$.
 - (b) Explicitly write down all of the functions $\{1, 2, 3\} \rightarrow \{T, F\}$.
 - (c) For any finite set S describe a bijection between the subsets of S and the functions from $S \to \{T, F\}$.
 - (d) Combine Problems 4(c), 5 and 6(c) to count the subsets of S.
- (a) How many functions are there from {1,2,3} to {1,2,3}? (Don't write them down.)
 (b) How many of the functions from part (a) are bijections? Write them all down.
 - (c) If S is a set of size n, tell me the number of bijections $S \to S$.