1. Use a truth table to verify de Morgan's laws:

$$
\neg(P \wedge Q)=\neg P \vee \neg Q \quad \text { and } \quad \neg(P \vee Q)=\neg P \wedge \neg Q
$$

2. Compute the disjunctive normal form of the following Boolean function. Use this to draw a circuit diagram for the function.

P	Q	R	$f(P, Q, R)$
T	T	T	F
T	T	F	T
T	F	T	T
T	F	F	F
F	T	T	F
F	T	F	T
F	F	T	F
F	F	F	T

3. Let B be a Boolean algebra. For all $P, Q \in B$ we define the Sheffer stroke as follows:

$$
P \uparrow Q:=\neg(P \wedge Q)
$$

Use abstract Boolean algebra to prove the following identities. Don't use truth tables!
(a) $\neg P=P \uparrow P$
(b) $P \vee Q=(P \uparrow P) \uparrow(Q \uparrow Q)$
(c) $P \wedge Q=(P \uparrow Q) \uparrow(P \uparrow Q)$

In logic the Sheffer stroke is called NAND. The formulas above demonstrate that any circuit can be built entirely from NAND gates. This is how solid state drives work.
4. Let $f: S \rightarrow T$ be a function of finite sets and for all $t \in T$ define the number

$$
d(t):=\#\{s \in S: f(s)=t\} .
$$

We say that f is injective if $d(t) \leq 1$ for all $t \in T$, surjective if $d(t) \geq 1$ for all $t \in T$ and bijective if $d(t)=1$ for all T.
(a) If $f: S \rightarrow T$ is injective prove that $\# S \leq \# T$.
(b) If $f: S \rightarrow T$ is subjective prove tha $\# S \geq \# T$.
(c) If $f: S \rightarrow T$ is bijective prove that $\# S=\# T$.
[Hint: Observe that $\sum_{t \in T} d(t)=\# S$.]
5. Let S and T be finite sets. Explain why there are $\# T^{\# S}$ different functions from S to T.
6. (a) Explicitly write down all of the subsets of $\{1,2,3\}$.
(b) Explicitly write down all of the functions $\{1,2,3\} \rightarrow\{T, F\}$.
(c) For any finite set S describe a bijection between the subsets of S and the functions from $S \rightarrow\{T, F\}$.
(d) Combine Problems 4(c), 5 and 6(c) to count the subsets of S.
7. (a) How many functions are there from $\{1,2,3\}$ to $\{1,2,3\}$? (Don't write them down.)
(b) How many of the functions from part (a) are bijections? Write them all down.
(c) If S is a set of size n, tell me the number of bijections $S \rightarrow S$.

