1. Simplify the following sum as much as possible:

$$
\sum_{k=0}^{n} \frac{(k+1)(k+2)}{2}=?
$$

2. Find a closed formula for the sum of the first n odd numbers:

$$
1+3+5+7+\cdots+(2 n-1)=?
$$

3. For any integers $1<a<b$, find a closed formula for the sum of all integers between them:

$$
a+(a+1)+\cdots+(b-1)+b=?
$$

4. The sequence of factorials 0 !, $1!, 2$!, \ldots is defined by the following initial condition and recurrence relation:

$$
n!:= \begin{cases}1 & \text { if } n=0 \\ (n-1)!\cdot n & \text { if } n \geq 1\end{cases}
$$

Prove by induction that we have

$$
n!>2^{n} \quad \text { for all } n \geq 4
$$

5. The Fibonacci sequence $F_{0}, F_{1}, F_{2}, \ldots$ is defined by the following initial conditions and recurrence relation:

$$
F_{n}:= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n \geq 2\end{cases}
$$

Let $\varphi:=(1+\sqrt{5}) / 2$ be the golden ratio, which satisfies $\varphi^{2}=\varphi+1$ (check it if you don't believe me). Prove by induction that we have

$$
\varphi^{n-2}<F_{n}<\varphi^{n-1} \quad \text { for all } n \geq 3
$$

[Hint: Use strong induction with two base cases.]
6. Use induction to verify the following formula:

$$
1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4} \quad \text { for all } n \geq 1
$$

7. Let $\binom{n}{k}$ be the entry in the n-th row and k-th diagonal of Pascal's triangle. The binomial theorem tells us that for any number x and for any whole number $n \geq 0$ we have

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} .
$$

Use this fact to simplify the following sums as much as possible:

$$
\sum_{k=0}^{n}\binom{n}{k}=? \quad \text { and } \quad \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=?
$$

