
MTH 309 Summer 2019
Review for Final Exam Drew Armstrong

Topics from Chapter 1

• Sum of consecutive integers: The following equation holds for all integers n ě 1:

1` 2` 3` ¨ ¨ ¨ ` n “
n
ÿ

k“1

k “
npn` 1q

2
“

ˆ

n` 1

2

˙

.

• Proof by induction:

Base Case. The formula holds when n “ 1 because 1 “ 1p1` 1q{2.

Induction Step. Now fix some n ě 1 and assume for induction that

1` 2` ¨ ¨ ¨ ` n “ npn` 1q{2.

In this case we also have

1` 2` ¨ ¨ ¨ ` pn` 1q “ p1` 2` ¨ ¨ ¨ ` nq ` pn` 1q

“ npn` 1q{2` pn` 1q

“ pn` 1q rn{2` 1s

“ pn` 1qpn` 2q{2.

• Principle of Induction: Let P pnq be a statement depending on an integer n P Z. If
(Base Case) P pbq “ T for some b P Z and if (Induction Step) P pnq ñ P pn ` 1q for
all n ě b then we conclude that P pnq “ T for all n ě b.

• Sum of consecutive squares: The following equation holds for all integers n ě 1:

12 ` 22 ` 32 ` ¨ ¨ ¨ ` n2 “
n
ÿ

k“1

k2 “
npn` 1qp2n` 1q

6
.

Exercise: Prove this by induction.

• Thus, for any numbers a, b, c we have

n
ÿ

k“1

pak2 ` bk ` cq “ a

˜

n
ÿ

k“1

k2

¸

` b

˜

n
ÿ

k“1

k

¸

` c

˜

n
ÿ

k“1

1

¸

“ a ¨
npn` 1qp2n` 1q

6
` b ¨

npn` 1q

2
` cn.
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• The Fibonacci numbers are defined by recursion:

Fn :“

$

’

&

’

%

0 if n “ 0,

1 if n “ 1,

Fn´1 ` Fn´2 otherwise.

• Strong Induction: Let P pnq be a statement depending on an integer n P Z. If (Base
Case) P pbq “ T for some b P Z and if (Induction Step)

rP pbq ^ P pb` 1q ^ ¨ ¨ ¨ ^ P pnqs ñ P pn` 1q for all n ě b

then we conclude that P pnq “ T for all n ě b.

• Let ϕ “ p1`
?

5q{2 and ψ “ p1´
?

5q{2 be the two roots of the equation x2´x´ 1 “ 0.
It follows that α2 “ α` 1 and hence αn “ αn´1 ` αn´2 for all n, and the same formula
holds for β. Now I claim that

Fn “
1
?

5
rϕn ´ ψns for all n ě 0.

Proof by Strong Induction:

Bases Cases. When n “ 0 we have pϕ0´ψ0q{
?

5 “ 0 “ F0. When n “ 1 we have
ϕ´ ψ “

?
5 and hence pϕ1 ´ ψ1q{

?
5 “ 1 “ F1. That’s enough.

Induction Step. Fix some n ě 0 and assume for induction that the formula holds
for all smaller values of n. Then we have

Fn “ Fn´1 ` Fn´2 definition

“
1
?

5

“

ϕn´1 ´ ψn´1
‰

`
1
?

5

“

ϕn´2 ´ ψn´2
‰

induction

“
1
?

5

“

ϕn´1 ` ϕn´2
‰

´
1
?

5

“

ψn´1 ` ψn´2
‰

“
1
?

5
rϕns ´

1
?

5
rψns

“
1
?

5
rϕn ´ ψns .

• For integers 0 ď k ď n we define the entries of Pascal’s triangle by recursion:

ˆ

n

k

˙

:“

#

1 k “ 0 or k “ n,
`

n´1
k´1

˘

`
`

n´1
k

˘

0 ă k ă n.

• Then one can prove the following two theorems by recursion.
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Closed Formula. For all integers 0 ď k ď n we have

ˆ

n

k

˙

“
n!

k!pn´ kq!
.

Exercise: Prove this. Don’t forget that 0! :“ 1.

Binomial Theorem. For all numbers x and for all integers n ě 0 we have

p1` xqn “
n
ÿ

k“0

ˆ

n

k

˙

xk.

You do not need to prove this. [Here is the proof: p1`xqn “ xp1`xqn´1`p1`xqn´1.]

Topics from Chapter 2

• A set is “a collection of things,” where order and repetition do not matter:

t1, 2, 3u “ t3, 1, 2u “ t1, 1, 2, 2, 3, 3, 2, 3, 1, 1u.

• We write A Ď B to mean @x, x P Añ x P B and we say “A is a subset of B.”

• From now on, all sets are subsets of a universal set U . Then for all A Ď U we define

A1 :“ tx P U : x R Au

and for all A,B Ď U we define

AYB :“ tx P U : x P A or x P Bu,

AXB :“ tx P U : x P A and x P Bu.

• The pictures are called Venn diagrams:

• The algebra of sets satisfies various algebraic identities, such as:

AYH “ A,
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AX U “ A,

AX pB Y Cq “ pAXBq Y pAX Cq,

pAXBq1 “ A1 YB1,

...

These identities can be “proved” using Venn diagrams, but mostly they are just obvious.

• The Cartesian product of sets S and T is the set of “ordered pairs:”

S ˆ T :“ tps, tq : s P S, t P T u.

It the sets are finite then #pS ˆ T q “ #S ˆ#T , hence the name.

• A function f : S Ñ T from set S (called the domain) to a set T (called the codomain)
is a subset of the Cartesian product: f Ď S ˆ T . There is only one rule: For each s P S
there exists a unique t P T such that ps, tq P f . We give this unique element t a
special name:

“t “ fpsq.”

If S and T are finite then

#tfunctions S Ñ T u “ p#T qp#Sq.

• A function f : S Ñ T is injective if fps1q “ fps2q implies s1 “ s2. The function is
surjective if for all t P T there exists some s P S such that fpsq “ t. The function is
bijective if it is both injective and surjective. Observe that

D injective f : S Ñ T ñ #S ď #T

D surjective f : S Ñ T ñ #S ě #T

D bijective f : S Ñ T ñ #S “ #T

• Example: There exists a bijection between the set of subsets of U and the set of functions
U Ñ tT, F u, hence

#tsubsets of Uu “ #tfunctions U Ñ tT, F uu “ p#tT, F uqp#Uq “ 2p#Uq.

Exercise: Describe this bijection.

• A Boolean function has the form f : tT, F un Ñ tT, F um. The number of such functions
is p2mqp2

nq. Most of the 16 functions f : tT, F u2 Ñ tT, F u have special names:

NOT P P OR Q P AND Q P XOR Q IF P THEN Q
P Q  P P _Q P ^Q P ‘Q P ñ Q

T T F T T F T
T F F T F T F
F T T T F T T
F F T F F F T
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• The algebra of sets and Boolean functions are related as follows:

A1 “ tx P U :  px P Aqu,

AYB “ tx P U : px P Aq _ px P Bqu,

AXB “ tx P U : px P Aq ^ px P Bqu.

They satisfy all of the same algebraic identities.

• De Morgan’s Laws make more sense in terms of logic. For all x P U let P pxq P tT, F u.
Then we have

 p@x P U,P pxqq “  

˜

ľ

xPU

P pxq

¸

“

˜

ł

xPU

 P pxq

¸

“ pDx P U, P pxqq

and

 pDx P U,P pxqq “  

˜

ł

xPU

P pxq

¸

“

˜

ľ

xPU

 P pxq

¸

“ p@x P U, P pxqq

Exercise: Translate these statements into English.

• The Principle of the Contrapositive says that pP ñ Qq “ p Q ñ  P q for all P,Q P

tT, F u. We can prove it with a truth table:

P Q P ñ Q  Q  P  Qñ  P

T T T F F T
T F F T F F
F T T F T T
F F T T T T

• Or we can prove it using Boolean algebra. First check that pP ñ Qq “ p P _ Qq for
all P,Q P tT, F u. Then we have

p Qñ  P q “ p p Qq _  P q “ pQ_ P q “ p P _Qq “ pP ñ Qq.

• We can draw many pictures of a Boolean function f : tT, F um Ñ tT, F un by wiring
together the following logic gates:
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• For example, let f : tT, F u3 Ñ tT, F u be defined by the following table:

P Q R fpP,Q,Rq

T T T T

T T F T

T F T T
T F F F

F T T T
F T F F
F F T F
F F F F

By naming the disjunction of the T -rows we obtain the “disjunctive normal form:”

fpP,Q,Rq “ pP ^Q^Rq _ pP ^Q^ Rq _ pP ^ Q^Rq _ p P ^Q^Rq.

We can find a simpler expression if we draw the Venn diagram:

And here is a picture of the corresponding circuit:
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Topics from Chapter 3

• The integers pZ,“,ă,`,ˆ, 0, 1q are defined by a bunch of obvious axioms, such as:

a “ a,

a` 0 “ a,

1a “ a,

a` pb` cq “ pa` bq ` c,

apb` cq “ ab` ac,

...

together with one non-obvious axiom called induction or well-ordering.

• The Well-Ordering Principle: Any non-empty set of integers that is bounded below has
a least element. In other words, if S Ď Z satisfies S ‰ H and if Db P Z,@a P S, b ď a
then Dm P S,@a P S,m ď a.

• Application of Well-Ordering: 1 is the least positive integer. In other words, there are
no integers between 0 and 1.

Proof: Let S be the set of positive integers, which is bounded below by 0. Since S is non-
empty (1 P S) we conclude from well-ordering that S has a least element m P S.
I claim that m “ 1. Indeed, since 1 is positive and since m is the least positive integer
we must have m ď 1. Now assume for contradiction that m ă 1. Then multiplying
both sides of m ă 1 by m gives m2 ă m and multiplying both sides of 0 ă m by m
gives 0 ă m2, hence m2 is a positive integer that is smaller than m. Contradiction. We
conclude that m “ 1 and hence 1 is the least positive integer. ˝

• Another form of Well-Ordering: There does not exist an infinite decreasing sequence of
integers that is bounded below:

r0 ą r1 ą r2 ą r3 ą ¨ ¨ ¨ ě b.

This is the reason that algorithms terminate.

• The Division Algorithm: Given a, b P Z with a ě 0 and b ą 0 there exist unique q, r P Z
such that

"

a “ qb` r,
0 ď r ă b

Proof of Existence: Keep subtracting b from a until you get a number less than b. Call
it r :“ a ´ qb ă b. We must have r ě 0 because the number was greater than or equal
to b on the second last iteration. If the algorithm went on forever we would obtain an
infinite sequence:

a ą a´ b ą a´ 2b ą a´ 3b ą ¨ ¨ ¨ ě b.

Hence the algorithm must terminate with a “ qb` r and 0 ď r ă b. ˝
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You don’t need to know the proof of uniqueness.

• First Application of Division: Base b Arithmetic. Fix some integer b ě 2. Then for each
integer n ě 0 there exists a unique sequence r0, r1, r2, . . . P t0, 1, . . . , b´ 1u such that

n “ r0 ` r1b` r2b
2 ` r3b

3 ` ¨ ¨ ¨ .

In this case we write n “ p¨ ¨ ¨ r2r1r0qb.

Proof: Divide n by b to get b “ q0b ` r0. Then continue to divide the quotient by b
to get qi´1 “ qib ` ri. The algorithm must terminate because b ą 1 implies qi´1 ą qi.
Uniqueness follows from uniqueness of remainders. ˝

• Example: Express 101 in base 3:

$

’

’

’

’

&

’

’

’

’

%

101 “ 3 ¨ 33 `2
33 “ 3 ¨ 11 `0
11 “ 3 ¨ 3 `2
3 “ 3 ¨ 1 `0
1 “ 3 ¨ 0 `1

,

/

/

/

/

.

/

/

/

/

-

ùñ p101q10 “ p10202q3.

• Second Application of Division: Euclidean Algorithm. To compute the gcd of a, b P Z
with b ą 0, first divide a by b to get a “ q1b`r1. Then divide b by r1 to get b “ q2r1`r2.
Continue to divide ri´1 by ri to get a decreasing sequence of remainders:

b ą r1 ą r2 ą ¨ ¨ ¨ ě 0.

By well-ordering this must stop. The last non-zero remainder equals gcdpa, bq.

Proof: If ri´1 “ qi`1ri ` ri`1 then gcdpri´1, riq “ gcdpri, ri`1q. More generally, if
a “ xb ` c then gcdpa, bq “ gcdpb, cq. Indeed, let d “ gcdpa, bq and e “ gcdpb, cq. Since
d|a and d|b one can check that d divides c “ a ´ xb, hence d ď e. Conversely, since e|b
and e|c one can check that e divides a “ xb` c, hence e ď d. ˝

• Example: Compute gcdp101, 82q:

$

’

’

&

’

’

%

101 “ 1 ¨ 82 `19
82 “ 4 ¨ 19 `6

19 “ 3 ¨ 6 ` 1
6 “ 6 ¨ 1 `0

,

/

/

.

/

/

-

ùñ gcdp101, 82q “ 1.

Bonus: The quotients tell us that

101

82
“ 1`

1

4` 1
3` 1

6

.
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Topics from Chapter 4

• The Multiplication Principle: When a sequence of choices is made, the possibilities
multiply. Sometimes this is drawn as a branching “decision tree.”

• Words: The number of words of length k from an alphabet is size n is

n
loomoon

1st letter

ˆ n
loomoon

2nd letter

ˆ ¨ ¨ ¨ ˆ n
loomoon

kth letter

“ nk.

• Permutations: The number of permutations of k things taken from n things is

n
loomoon

1st letter

ˆ pn´ 1q
loomoon

2nd letter

ˆ ¨ ¨ ¨ ˆ pn´ pk ´ 1qq
loooooomoooooon

kth letter

“ npn´ 1q ¨ ¨ ¨ pn´ k ` 1q.

If k ď n then we can simplify this to

npn´ 1q ¨ ¨ ¨ pn´ k ` 1q “ npn´ 1q ¨ ¨ ¨ pn´ k ` 1q
pn´ kq ¨ ¨ ¨ 3 ¨ 2 ¨ 1

pn´ kq ¨ ¨ ¨ 3 ¨ 2 ¨ 1
“

n!

pn´ kq!

• Combinations: Let nCk be the number of subsets of size k from a set of size n, equiva-
lently the number of ways to choose k unordered things without repetition from n things.
Furthermore, let nPk be the number of ways to choose k ordered things without repe-
tition. We showed above that

nPk “
n!

pn´ kq!
.

On the other hand, we can create an ordered selection by first choosing an unordered
selection and then ordering it:

nPk “ nCk
loomoon

choose unordered selection

ˆ k!
loomoon

then put it in order

.

It follows that

nCk “
nPk

k!
“
n!{pn´ kq!

k!
“

n!

k!pn´ kq!
“

ˆ

n

k

˙

.

Was that a surprise?

• We can prove the same result by induction:

Boundary Cases. If k “ 0 or n “ 0 then we have nCk “ 1 because there is one
way to choose nothing and one way to choose everything.

Recursion. Let S be the set of subsets of size k from t1, 2, . . . , nu so that #S “

nCk. We can break this set into two pieces:

S1 :“ tA Ď t1, . . . , nu : #A “ k and n P Au,

S2 :“ tA Ď t1, . . . , nu : #A “ k and n R Au.

Exercise: Explain why #S1 “ n´1Ck´1 and #S2 “ n´1Ck. It follows that

nCk “ #S “ #S1 `#S2 “ n´1Ck´1 ` n´1Ck.
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• Multisets: The number of non-negative solutions x1, . . . , xn P N to the equation x1 `
¨ ¨ ¨ ` xn “ k is

´́ n

k

¯̄

:“

ˆ

n` k ´ 1

k

˙

.

This is also the number of ways to choose k (unordered) gallons of ice cream from n
possible flavors (think of xi as the number of gallons of flavor i). We could also call
these “multisubsets,” i.e., subsets with possible repetition.

Proof: Encode a choice as a binary string containing k copies of 1 and n´ 1 copies of 0:

1 ¨ ¨ ¨ 1
loomoon

value of x1

0 1 ¨ ¨ ¨ 1
loomoon

value of x2

0 ¨ ¨ ¨ 0 1 ¨ ¨ ¨ 1
loomoon

value of xn

The number of such binary strings is
`k`pn´1q

k

˘

because we need to choose k positions
to place the 1’s from k ` pn ´ 1q possible positions. Equivalently, we can choose n ´ 1
positions for the 0’s. ˝

• Binomial coefficients are symmetric:
`

n
k

˘

“
`

n
n´k

˘

.

Counting Proof: Let A be the set of subsets of size k from t1, 2, . . . , nu and let B be
the set of subsets of size n ´ k. Then “complementation” is a bijection A Ø B, hence
#A “ #B. Equivalently, let A be the set of binary strings of length n with k copies of 1
and let B be the set of binary strings of length n with n´ k copies of 1. Then “flipping
all the bits” is a bijection AØ B. ˝

• Substituting x “ 1 or x “ ´1 into p1` xqn “
ř

k

`

n
k

˘

xk gives:

2n “

ˆ

n

0

˙

`

ˆ

n

1

˙

` ¨ ¨ ¨ `

ˆ

n

n

˙

,

0n “

ˆ

n

0

˙

´

ˆ

n

1

˙

` ¨ ¨ ¨ ` p´1qn
ˆ

n

n

˙

,

Differentiating and then substituting x “ 1 gives:

np1` xqn´1 “

ˆ

n

1

˙

` 2

ˆ

n

2

˙

x` 3

ˆ

n

3

˙

x2 ` ¨ ¨ ¨ ` n

ˆ

n

n

˙

xn´1

n2n´1 “

ˆ

n

1

˙

` 2

ˆ

n

2

˙

` 3

ˆ

n

3

˙

` ¨ ¨ ¨ ` n

ˆ

n

n

˙

.

• Exercise: Give counting proofs for the three previous identities. For the first identity,
group subsets by their number of elements. For the second, flip one bit to obtain a
bijection between even and odd subsets. For the third, choose choose a committee and
then choose one person from the committee to be the president.

• The Multinomial Theorem says that

pa1 ` a2 ` ¨ ¨ ¨ anq
` “

ÿ

ˆ

`

k1, k2, . . . , kn

˙

ak11 a
k2
2 ¨ ¨ ¨ a

kn
n ,
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where the multinomial coefficients are defined by
ˆ

`

k1, k2, . . . , kn

˙

“
`!

k1!k2! ¨ ¨ ¨ kn!

and where the sum is taken over all k1, . . . , kn P N such that k1 ` ¨ ¨ ¨ kn “ `.

• Substituting a1 “ ¨ ¨ ¨ “ an “ 1 into the multinomial theorem gives

n` “
ÿ

ˆ

`

k1, . . . , kn

˙

.

What does this mean? The left side counts the words of length ` from the alphabet
ta1, . . . , anu. The right side counts the same words, but it groups them according to the
number of each type of letter. We use the fact that

ˆ

`

k1, k2, . . . , kn

˙

“ #

"

words of length ` containing
ki copies of ai for each i

*

.

• Example: How many arrangements of the letters e, f, f, l, o, r, e, s, c, e, n, c, e ?

Topics from Chapter 5

• A simple graph is a set of vertices, together with a set of unordered pairs of vertices, called
edges. For example, let V “ t1, 2, 3, 4, 5, 6u and E “ tt1, 2u, t2, 3u, t1, 3u, t3, 4u, t4, 5uu.

• It is helpful to draw a graph, but the way you draw it is not important:

• If you permute labels (or if you don’t draw labels) then you obtain isomorphic graphs:
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• To prove that two graphs are isomorphic you must label them. To prove that two graphs
are not isomorphic you need a trick.

• The easiest trick is to look at the degrees, since these are preserved under isomorphism.
Let G “ pV,Eq be a simple graph. Then for each vertex u P V we define its degree as

degpuq :“ #tv P V : tu, vu P Eu.

• The Handshaking Lemma says that

ÿ

uPV

degpuq “ 2 ¨#E.

Proof: Let L be the set of lollipops in the graph (a lollipop is an edge together with one
of its vertices). By choosing the edge first we have #L “ 2 ¨#E. By choosing the vertex
first we have #L “

ř

uPV degpuq. ˝

• It follows that the number of odd-degree vertices is even. For example, there is no graph
with degree sequence 2, 2, 2, 3, 3, 4, 5 because 2` 2` 2` 3` 3` 4` 5 is an odd number.

• A graph is called d-regular if each vertex has degree d. If G is a d-regular graph with n
vertices then it follows from the First Theorem that dn is even. For example, there does
not exist a 3-regular graph on 7 vertices. Exercise: Draw a 3 regular graph on 8 vertices.
Exercise: Prove that there exist two non-isomorphic 3-regular graphs on 6 vertices.

• Example: The hypercube Qn is an n-regular graph on 2n vertices. The vertices are
binary strings of length n and the edges are “bit flips.” Exercise: Compute the number
of edges.1

• Famous graphs include the path Pn, cycle Cn, complete graph Kn and the complete
bipartite graph Km,n. You should know all the important properties of these graphs
and be able to draw them.

• Let G “ pV,Eq be a simple graph. The complement G has the same vertices but the
edges and the non-edges have been flipped. Thus if G has n vertices and e edges then
G has n vertices and

`

n
2

˘

´ e edges. Exercise: Draw the graph K3,4 and its complement.

• A u, v-walk of length ` in G “ pV,Eq is a sequence of vertices u “ v0, v1, . . . , v` “ v P V
such that tvi´1, viu P E for all i P t1, . . . , `u. A path is a walk with no repeated vertex.
By recursion every u, v-walk contains a u, v-path. Proof: Find a repeated vertex and
cut out everything in between. Repeat until there is no repeated vertex.

• We say that the graph is connected if for all u, v P V there exists a u, v-path. More
generally, we define the connected components G “ G1 YG2 Y ¨ ¨ ¨ YGk so that vertices
u, v P V are connected if and only if they are in the same component. Picture:

1Hao Huang recently (July 1st, 2019) proved the following result, which settled a 30-year-old conjecture:
Let A be a subset of vertices in the hypercube Qn satisfying #A ě 2n´1

` 1. Then there exists a vertex a P A
that has at least

?
n neighbors in A.
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• If G has n vertices, e edges and k components then n ´ k ď e. [Remark: This result
holds even for multigraphs.]

Proof by induction on e: Fix n ě 0. If e “ 0 then k “ n and hence n´ k “ 0 “ e. Now
suppose that e ě 1 and delete a random edge to obtain a graph G1 with n1, e1, k1. Note
that n1 “ n and e1 “ e ´ 1. Since e1 ă e we can assume by induction that n1 ´ k1 ď e1.
But we also know that k1 ď k ` 1 since deleting an edge creates at most one extra
component (and maybe none). Hence

e “ e1 ´ 1 ě pn1 ´ k1q ´ 1 “ n´ 1´ k1 ě n´ 1´ pk ` 1q “ n´ k.

˝

• If G is a simple graph with n vertices, e edges and k components then e ď
`

n´pk´1q
2

˘

. You
do not need to prove this. The number of edges is maximized when every component
but one is a single vertex and the last component is a complete graph on n ´ pk ´ 1q
vertices.

• A circuit is a walk that begins and ends at the same vertex. A cycle is a circuit that has
no repeated vertices (except for the basepoint). Every circuit contains a cycle.

• First Application: A graph is called bipartite if it has no odd cycles. Equivalently, we
can color the vertices with two colors such that no two vertices of the same color share
an edge. (You don’t need to know the proof.)

• Second Application: A graph is called a forest if it has no cycles at all. One can show
that this happens exactly when e “ n´ k, i.e., when the number of edges is minimized.
A forest with one connected component (k “ 1) is called a tree. In other words, a tree is
a connected graph with no cycles. Equivalently, a tree is a connected graph on n vertices
with e “ n ´ 1 edges. Exercise: Draw a forest with n “ 12 and k “ 3. Verify that the
number of edges is e “ n´ k “ 9.

• Let G be a tree on vertex set t1, 2, . . . , nu and let di :“ degpiq. Since G has e “ n ´ 1
edges we must have

n
ÿ

i“1

di “ 2pn´ 1q
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and hence

n
ÿ

i“1

pdi ´ 1q “
n
ÿ

i“1

di ´
n
ÿ

i“1

1 “ 2pn´ 1q ´ n “ 2n´ 2´ n “ n´ 2.

• Cayley’s Tree Formula says that

ˆ

n´ 2

d1 ´ 1, d2 ´ 1, . . . , dn ´ 1

˙

“ #

"

trees on vertex set t1, . . . , nu
where vertex i has degree di

*

.

By summing over all possible degrees we obtain

#tlabeled trees on n verticesu “
ÿ

ˆ

n´ 2

d1 ´ 1, d2 ´ 1, . . . , dn ´ 1

˙

“ nn´2.

Exercise: Verify that this last step follows from the multinomial theorem.

• Prüfer’s proof of Cayley’s Formula: Given a tree T on t1, 2, . . . , nu, delete the smallest
leaf (vertex of degree one) and let p1 be the name of its parent. Repeat to obtain a
sequence pp1, p2, . . . , pn´2q called the Prüfer code of the tree. One can show that every
word of length n´ 2 from the alphabet t1, . . . , nu is the Prüfer code of some tree. (You
don’t need to show this.) Furthermore, the number i shows up exactly di ´ 1 times in
the code. Example:
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