Topics from Chapter 1

• Sum of consecutive integers: The following equation holds for all integers $n \ge 1$:

$$1 + 2 + 3 + \dots + n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2} = \binom{n+1}{2}.$$

• Proof by induction:

Base Case. The formula holds when n = 1 because 1 = 1(1 + 1)/2.

Induction Step. Now fix some $n \ge 1$ and assume for induction that

$$1 + 2 + \dots + n = n(n+1)/2.$$

In this case we also have

$$1 + 2 + \dots + (n + 1) = (1 + 2 + \dots + n) + (n + 1)$$

= $n(n + 1)/2 + (n + 1)$
= $(n + 1) [n/2 + 1]$
= $(n + 1)(n + 2)/2$.

- Principle of Induction: Let P(n) be a statement depending on an integer $n \in \mathbb{Z}$. If (Base Case) P(b) = T for some $b \in \mathbb{Z}$ and if (Induction Step) $P(n) \Rightarrow P(n+1)$ for all $n \ge b$ then we conclude that P(n) = T for all $n \ge b$.
- Sum of consecutive squares: The following equation holds for all integers $n \ge 1$:

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Exercise: Prove this by induction.

• Thus, for any numbers a, b, c we have

$$\sum_{k=1}^{n} (ak^2 + bk + c) = a\left(\sum_{k=1}^{n} k^2\right) + b\left(\sum_{k=1}^{n} k\right) + c\left(\sum_{k=1}^{n} 1\right)$$
$$= a \cdot \frac{n(n+1)(2n+1)}{6} + b \cdot \frac{n(n+1)}{2} + cn.$$

• The Fibonacci numbers are defined by recursion:

$$F_n := \begin{cases} 0 & \text{if } n = 0, \\ 1 & \text{if } n = 1, \\ F_{n-1} + F_{n-2} & \text{otherwise.} \end{cases}$$

• Strong Induction: Let P(n) be a statement depending on an integer $n \in \mathbb{Z}$. If (Base Case) P(b) = T for some $b \in \mathbb{Z}$ and if (Induction Step)

$$[P(b) \land P(b+1) \land \dots \land P(n)] \Rightarrow P(n+1) \quad \text{for all } n \ge b$$

then we conclude that P(n) = T for all $n \ge b$.

• Let $\varphi = (1 + \sqrt{5})/2$ and $\psi = (1 - \sqrt{5})/2$ be the two roots of the equation $x^2 - x - 1 = 0$. It follows that $\alpha^2 = \alpha + 1$ and hence $\alpha^n = \alpha^{n-1} + \alpha^{n-2}$ for all n, and the same formula holds for β . Now I claim that

$$F_n = \frac{1}{\sqrt{5}} \left[\varphi^n - \psi^n \right] \quad \text{for all } n \ge 0.$$

Proof by Strong Induction:

Bases Cases. When n = 0 we have $(\varphi^0 - \psi^0)/\sqrt{5} = 0 = F_0$. When n = 1 we have $\varphi - \psi = \sqrt{5}$ and hence $(\varphi^1 - \psi^1)/\sqrt{5} = 1 = F_1$. That's enough.

Induction Step. Fix some $n \ge 0$ and assume for induction that the formula holds for all smaller values of n. Then we have

$$F_{n} = F_{n-1} + F_{n-2}$$
 definition

$$= \frac{1}{\sqrt{5}} \left[\varphi^{n-1} - \psi^{n-1} \right] + \frac{1}{\sqrt{5}} \left[\varphi^{n-2} - \psi^{n-2} \right]$$
 induction

$$= \frac{1}{\sqrt{5}} \left[\varphi^{n-1} + \varphi^{n-2} \right] - \frac{1}{\sqrt{5}} \left[\psi^{n-1} + \psi^{n-2} \right]$$

$$= \frac{1}{\sqrt{5}} \left[\varphi^{n} \right] - \frac{1}{\sqrt{5}} \left[\psi^{n} \right]$$

$$= \frac{1}{\sqrt{5}} \left[\varphi^{n} - \psi^{n} \right].$$

• For integers $0 \le k \le n$ we define the entries of Pascal's triangle by recursion:

$$\binom{n}{k} := \begin{cases} 1 & k = 0 \text{ or } k = n, \\ \binom{n-1}{k-1} + \binom{n-1}{k} & 0 < k < n. \end{cases}$$

• Then one can prove the following two theorems by recursion.

Closed Formula. For all integers $0 \le k \le n$ we have

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Exercise: Prove this. Don't forget that 0! := 1.

Binomial Theorem. For all numbers x and for all integers $n \ge 0$ we have

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

You do not need to prove this. [Here is the proof: $(1+x)^n = x(1+x)^{n-1} + (1+x)^{n-1}$.]

Topics from Chapter 2

• A set is "a collection of things," where order and repetition do not matter:

$$\{1, 2, 3\} = \{3, 1, 2\} = \{1, 1, 2, 2, 3, 3, 2, 3, 1, 1\}$$

- We write $A \subseteq B$ to mean $\forall x, x \in A \Rightarrow x \in B$ and we say "A is a subset of B."
- From now on, all sets are subsets of a universal set U. Then for all $A \subseteq U$ we define

$$A' := \{ x \in U : x \notin A \}$$

and for all $A, B \subseteq U$ we define

$$A \cup B := \{ x \in U : x \in A \text{ or } x \in B \},\$$

$$A \cap B := \{ x \in U : x \in A \text{ and } x \in B \}$$

• The pictures are called Venn diagrams:

• The algebra of sets satisfies various algebraic identities, such as:

$$A\cup \varnothing = A,$$

$$A \cap U = A,$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

$$(A \cap B)' = A' \cup B',$$

$$\vdots$$

These identities can be "proved" using Venn diagrams, but mostly they are just obvious.

• The Cartesian product of sets S and T is the set of "ordered pairs:"

$$S \times T := \{(s,t) : s \in S, t \in T\}.$$

It the sets are finite then $\#(S \times T) = \#S \times \#T$, hence the name.

• A function $f: S \to T$ from set S (called the domain) to a set T (called the codomain) is a subset of the Cartesian product: $f \subseteq S \times T$. There is only one rule: For each $s \in S$ **there exists a unique** $t \in T$ such that $(s,t) \in f$. We give this unique element t a special name:

$$"t = f(s)."$$

If S and T are finite then

$$#\{\text{functions } S \to T\} = (\#T)^{(\#S)}.$$

• A function $f: S \to T$ is injective if $f(s_1) = f(s_2)$ implies $s_1 = s_2$. The function is surjective if for all $t \in T$ there exists some $s \in S$ such that f(s) = t. The function is bijective if it is both injective and surjective. Observe that

$$\exists \text{ injective } f: S \to T \Rightarrow \#S \leqslant \#T$$
$$\exists \text{ surjective } f: S \to T \Rightarrow \#S \geqslant \#T$$
$$\exists \text{ bijective } f: S \to T \Rightarrow \#S = \#T$$

• Example: There exists a bijection between the set of subsets of U and the set of functions $U \rightarrow \{T, F\}$, hence

$$\#$$
{subsets of U } = $\#$ {functions $U \to \{T, F\}$ } = $(\#\{T, F\})^{(\#U)} = 2^{(\#U)}$

Exercise: Describe this bijection.

• A Boolean function has the form $f : \{T, F\}^n \to \{T, F\}^m$. The number of such functions is $(2^m)^{(2^n)}$. Most of the 16 functions $f : \{T, F\}^2 \to \{T, F\}$ have special names:

		NOT P	P OR Q	P AND Q	$P \operatorname{XOR} Q$	IF P THEN Q
P	Q	$\neg P$	$P \lor Q$	$P \wedge Q$	$P\oplus Q$	$P \Rightarrow Q$
T	T	F	T	T	F	T
T	F	F	T	F	T	F
F	T	T	T	F	T	T
F	F	T	F	F	F	T

• The algebra of sets and Boolean functions are related as follows:

$$A' = \{x \in U : \neg (x \in A)\},\$$
$$A \cup B = \{x \in U : (x \in A) \lor (x \in B)\},\$$
$$A \cap B = \{x \in U : (x \in A) \land (x \in B)\}.$$

They satisfy all of the same algebraic identities.

• De Morgan's Laws make more sense in terms of logic. For all $x \in U$ let $P(x) \in \{T, F\}$. Then we have

$$\neg \left(\forall x \in U, P(x)\right) = \neg \left(\bigwedge_{x \in U} P(x)\right) = \left(\bigvee_{x \in U} \neg P(x)\right) = \left(\exists x \in U, \neg P(x)\right)$$

and

$$\neg \left(\exists x \in U, P(x)\right) = \neg \left(\bigvee_{x \in U} P(x)\right) = \left(\bigwedge_{x \in U} \neg P(x)\right) = \left(\forall x \in U, \neg P(x)\right)$$

Exercise: Translate these statements into English.

• The Principle of the Contrapositive says that $(P \Rightarrow Q) = (\neg Q \Rightarrow \neg P)$ for all $P, Q \in \{T, F\}$. We can prove it with a truth table:

P	Q	$P \Rightarrow Q$	$\neg Q$	$\neg P$	$\neg Q \Rightarrow \neg P$
T	T	T	F	F	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	T	T	T

• Or we can prove it using Boolean algebra. First check that $(P \Rightarrow Q) = (\neg P \lor Q)$ for all $P, Q \in \{T, F\}$. Then we have

$$(\neg Q \Rightarrow \neg P) = (\neg (\neg Q) \lor \neg P) = (Q \lor \neg P) = (\neg P \lor Q) = (P \Rightarrow Q).$$

• We can draw many pictures of a Boolean function $f : \{T, F\}^m \to \{T, F\}^n$ by wiring together the following logic gates:

• For example, let $f: \{T, F\}^3 \to \{T, F\}$ be defined by the following table:

P	Q	R	f(P,Q,R)
T	T	T	T
T	T	F	T
T	F	T	T
T	F	F	\overline{F}
F	T	T	T
F	T	F	\overline{F}
F	F	T	F
F	F	F	F

By naming the disjunction of the T-rows we obtain the "disjunctive normal form:"

$$f(P,Q,R) = (P \land Q \land R) \lor (P \land Q \land \neg R) \lor (P \land \neg Q \land R) \lor (\neg P \land Q \land R)$$

We can find a simpler expression if we draw the Venn diagram:

And here is a picture of the corresponding circuit:

Topics from Chapter 3

• The integers $(\mathbb{Z}, =, <, +, \times, 0, 1)$ are defined by a bunch of obvious axioms, such as:

$$a = a,$$

$$a + 0 = a,$$

$$1a = a,$$

$$a + (b + c) = (a + b) + c,$$

$$a(b + c) = ab + ac,$$

$$\vdots$$

together with one non-obvious axiom called induction or well-ordering.

- The Well-Ordering Principle: Any non-empty set of integers that is bounded below has a least element. In other words, if $S \subseteq \mathbb{Z}$ satisfies $S \neq \emptyset$ and if $\exists b \in \mathbb{Z}, \forall a \in S, b \leq a$ then $\exists m \in S, \forall a \in S, m \leq a$.
- Application of Well-Ordering: 1 is the least positive integer. In other words, there are no integers between 0 and 1.

Proof: Let S be the set of positive integers, which is bounded below by 0. Since S is nonempty $(1 \in S)$ we conclude from well-ordering that S has a least element $m \in S$. I claim that m = 1. Indeed, since 1 is positive and since m is the least positive integer we must have $m \leq 1$. Now assume for contradiction that m < 1. Then multiplying both sides of m < 1 by m gives $m^2 < m$ and multiplying both sides of 0 < m by m gives $0 < m^2$, hence m^2 is a positive integer that is smaller than m. Contradiction. We conclude that m = 1 and hence 1 is the least positive integer.

• Another form of Well-Ordering: There does **not** exist an infinite decreasing sequence of integers that is bounded below:

$$r_0 > r_1 > r_2 > r_3 > \cdots \ge b.$$

This is the reason that algorithms terminate.

• The Division Algorithm: Given $a, b \in \mathbb{Z}$ with $a \ge 0$ and b > 0 there exist unique $q, r \in \mathbb{Z}$ such that

$$\begin{cases} a = qb + r \\ 0 \leqslant r < b \end{cases}$$

Proof of Existence: Keep subtracting b from a until you get a number less than b. Call it r := a - qb < b. We must have $r \ge 0$ because the number was greater than or equal to b on the second last iteration. If the algorithm went on forever we would obtain an infinite sequence:

$$a > a - b > a - 2b > a - 3b > \dots \ge b.$$

Hence the algorithm must terminate with a = qb + r and $0 \le r < b$.

You don't need to know the proof of uniqueness.

• First Application of Division: Base b Arithmetic. Fix some integer $b \ge 2$. Then for each integer $n \ge 0$ there exists a unique sequence $r_0, r_1, r_2, \ldots \in \{0, 1, \ldots, b-1\}$ such that

$$n = r_0 + r_1 b + r_2 b^2 + r_3 b^3 + \cdots$$

In this case we write $n = (\cdots r_2 r_1 r_0)_b$.

Proof: Divide n by b to get $b = q_0 b + r_0$. Then continue to divide the quotient by b to get $q_{i-1} = q_i b + r_i$. The algorithm must terminate because b > 1 implies $q_{i-1} > q_i$. Uniqueness follows from uniqueness of remainders.

• Example: Express 101 in base 3:

$$\left\{ \begin{array}{rrrr} \mathbf{101} &= 3 \cdot \mathbf{33} &+ 2 \\ \mathbf{33} &= 3 \cdot \mathbf{11} &+ 0 \\ \mathbf{11} &= 3 \cdot \mathbf{3} &+ 2 \\ \mathbf{3} &= 3 \cdot \mathbf{1} &+ 0 \\ \mathbf{1} &= 3 \cdot \mathbf{0} &+ 1 \end{array} \right\} \implies (101)_{10} = (10202)_3.$$

• Second Application of Division: Euclidean Algorithm. To compute the gcd of $a, b \in \mathbb{Z}$ with b > 0, first divide a by b to get $a = q_1b + r_1$. Then divide b by r_1 to get $b = q_2r_1 + r_2$. Continue to divide r_{i-1} by r_i to get a decreasing sequence of remainders:

$$b > r_1 > r_2 > \dots \ge 0.$$

By well-ordering this must stop. The last non-zero remainder equals gcd(a, b).

Proof: If $r_{i-1} = q_{i+1}r_i + r_{i+1}$ then $gcd(r_{i-1}, r_i) = gcd(r_i, r_{i+1})$. More generally, if a = xb + c then gcd(a, b) = gcd(b, c). Indeed, let d = gcd(a, b) and e = gcd(b, c). Since d|a and d|b one can check that d divides c = a - xb, hence $d \leq e$. Conversely, since e|b and e|c one can check that e divides a = xb + c, hence $e \leq d$.

• Example: Compute gcd(101, 82):

$$\left\{ \begin{array}{ccc} \mathbf{101} &= 1 \cdot \mathbf{82} &+ \mathbf{19} \\ \mathbf{82} &= 4 \cdot \mathbf{19} &+ \mathbf{6} \\ \mathbf{19} &= 3 \cdot \mathbf{6} &+ \mathbf{1} \\ \mathbf{6} &= 6 \cdot \mathbf{1} &+ \mathbf{0} \end{array} \right\} \implies \operatorname{gcd}(101, 82) = 1.$$

Bonus: The quotients tell us that

$$\frac{101}{82} = 1 + \frac{1}{4 + \frac{1}{3 + \frac{1}{6}}}$$

Topics from Chapter 4

- The Multiplication Principle: When a sequence of choices is made, the possibilities multiply. Sometimes this is drawn as a branching "decision tree."
- Words: The number of words of length k from an alphabet is size n is

$$\underbrace{n}_{\text{1st letter}} \times \underbrace{n}_{\text{2nd letter}} \times \cdots \times \underbrace{n}_{k \text{th letter}} = n^k$$

• Permutations: The number of permutations of k things taken from n things is

$$\underbrace{n}_{\text{1st letter}} \times \underbrace{(n-1)}_{\text{2nd letter}} \times \cdots \times \underbrace{(n-(k-1))}_{k\text{th letter}} = n(n-1)\cdots(n-k+1).$$

If $k \leq n$ then we can simplify this to

$$n(n-1)\cdots(n-k+1) = n(n-1)\cdots(n-k+1)\frac{(n-k)\cdots 3\cdot 2\cdot 1}{(n-k)\cdots 3\cdot 2\cdot 1} = \frac{n!}{(n-k)!}$$

• Combinations: Let ${}_{n}C_{k}$ be the number of subsets of size k from a set of size n, equivalently the number of ways to choose k unordered things without repetition from n things. Furthermore, let ${}_{n}P_{k}$ be the number of ways to choose k ordered things without repetition. We showed above that

$${}_{n}P_{k} = \frac{n!}{(n-k)!}$$

On the other hand, we can create an ordered selection by first choosing an unordered selection and then ordering it:

$${}_{n}P_{k} = \underbrace{{}_{n}C_{k}}_{\text{choose unordered selection}} \times \underbrace{k!}_{\text{then put it in order}}.$$

It follows that

$${}_{n}C_{k} = \frac{nP_{k}}{k!} = \frac{n!/(n-k)!}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}.$$

Was that a surprise?

• We can prove the same result by induction:

Boundary Cases. If k = 0 or n = 0 then we have ${}_{n}C_{k} = 1$ because there is one way to choose nothing and one way to choose everything.

Recursion. Let S be the set of subsets of size k from $\{1, 2, ..., n\}$ so that $\#S = {}_{n}C_{k}$. We can break this set into two pieces:

$$S' := \{ A \subseteq \{1, \dots, n\} : \#A = k \text{ and } n \in A \},\$$

$$S'' := \{ A \subseteq \{1, \dots, n\} : \#A = k \text{ and } n \notin A \}.$$

Exercise: Explain why $\#S' = {}_{n-1}C_{k-1}$ and $\#S'' = {}_{n-1}C_k$. It follows that

$${}_{n}C_{k} = \#S = \#S' + \#S'' = {}_{n-1}C_{k-1} + {}_{n-1}C_{k}.$$

• Multisets: The number of non-negative solutions $x_1, \ldots, x_n \in \mathbb{N}$ to the equation $x_1 + \cdots + x_n = k$ is

$$\binom{n}{k} := \binom{n+k-1}{k}.$$

This is also the number of ways to choose k (unordered) gallons of ice cream from n possible flavors (think of x_i as the number of gallons of flavor i). We could also call these "multisubsets," i.e., subsets with possible repetition.

Proof: Encode a choice as a binary string containing k copies of 1 and n-1 copies of 0:

$$\underbrace{1\cdots 1}_{\text{value of } x_1} 0 \underbrace{1\cdots 1}_{\text{value of } x_2} 0 \cdots 0 \underbrace{1\cdots 1}_{\text{value of } x_n}$$

The number of such binary strings is $\binom{k+(n-1)}{k}$ because we need to choose k positions to place the 1's from k + (n-1) possible positions. Equivalently, we can choose n-1 positions for the 0's.

• Binomial coefficients are symmetric: $\binom{n}{k} = \binom{n}{n-k}$.

Counting Proof: Let A be the set of subsets of size k from $\{1, 2, ..., n\}$ and let B be the set of subsets of size n - k. Then "complementation" is a bijection $A \leftrightarrow B$, hence #A = #B. Equivalently, let A be the set of binary strings of length n with k copies of 1 and let B be the set of binary strings of length n with n - k copies of 1. Then "flipping all the bits" is a bijection $A \leftrightarrow B$.

• Substituting x = 1 or x = -1 into $(1 + x)^n = \sum_k {n \choose k} x^k$ gives:

$$2^{n} = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n},$$

$$0^{n} = \binom{n}{0} - \binom{n}{1} + \dots + (-1)^{n} \binom{n}{n},$$

Differentiating and then substituting x = 1 gives:

$$n(1+x)^{n-1} = \binom{n}{1} + 2\binom{n}{2}x + 3\binom{n}{3}x^2 + \dots + n\binom{n}{n}x^{n-1}$$
$$n2^{n-1} = \binom{n}{1} + 2\binom{n}{2} + 3\binom{n}{3} + \dots + n\binom{n}{n}.$$

- Exercise: Give counting proofs for the three previous identities. For the first identity, group subsets by their number of elements. For the second, flip one bit to obtain a bijection between even and odd subsets. For the third, choose choose a committee and then choose one person from the committee to be the president.
- The Multinomial Theorem says that

$$(a_1 + a_2 + \cdots + a_n)^{\ell} = \sum {\ell \choose k_1, k_2, \dots, k_n} a_1^{k_1} a_2^{k_2} \cdots + a_n^{k_n},$$

where the multinomial coefficients are defined by

$$\binom{\ell}{k_1, k_2, \dots, k_n} = \frac{\ell!}{k_1! k_2! \cdots k_n!}$$

and where the sum is taken over all $k_1, \ldots, k_n \in \mathbb{N}$ such that $k_1 + \cdots + k_n = \ell$.

• Substituting $a_1 = \cdots = a_n = 1$ into the multinomial theorem gives

$$n^{\ell} = \sum \binom{\ell}{k_1, \dots, k_n}.$$

What does this mean? The left side counts the words of length ℓ from the alphabet $\{a_1, \ldots, a_n\}$. The right side counts the same words, but it groups them according to the number of each type of letter. We use the fact that

$$\binom{\ell}{k_1, k_2, \dots, k_n} = \# \left\{ \begin{array}{c} \text{words of length } \ell \text{ containing} \\ k_i \text{ copies of } a_i \text{ for each } i \end{array} \right\}$$

• Example: How many arrangements of the letters e, f, f, l, o, r, e, s, c, e, n, c, e?

Topics from Chapter 5

- A simple graph is a set of vertices, together with a set of unordered pairs of vertices, called edges. For example, let $V = \{1, 2, 3, 4, 5, 6\}$ and $E = \{\{1, 2\}, \{2, 3\}, \{1, 3\}, \{3, 4\}, \{4, 5\}\}$.
- It is helpful to draw a graph, but the way you draw it is not important:

• If you permute labels (or if you don't draw labels) then you obtain *isomorphic graphs*:

- To prove that two graphs are isomorphic you must label them. To prove that two graphs are **not** isomorphic you need a trick.
- The easiest trick is to look at the degrees, since these are preserved under isomorphism. Let G = (V, E) be a simple graph. Then for each vertex $u \in V$ we define its degree as

$$\deg(u) := \#\{v \in V : \{u, v\} \in E\}.$$

• The Handshaking Lemma says that

$$\sum_{u \in V} \deg(u) = 2 \cdot \#E.$$

Proof: Let L be the set of lollipops in the graph (a lollipop is an edge together with one of its vertices). By choosing the edge first we have $\#L = 2 \cdot \#E$. By choosing the vertex first we have $\#L = \sum_{u \in V} \deg(u)$.

- It follows that the number of odd-degree vertices is even. For example, there is no graph with degree sequence 2, 2, 2, 3, 3, 4, 5 because 2 + 2 + 2 + 3 + 3 + 4 + 5 is an odd number.
- A graph is called *d*-regular if each vertex has degree *d*. If *G* is a *d*-regular graph with *n* vertices then it follows from the First Theorem that dn is even. For example, there does not exist a 3-regular graph on 7 vertices. Exercise: Draw a 3 regular graph on 8 vertices. Exercise: Prove that there exist two non-isomorphic 3-regular graphs on 6 vertices.
- Example: The hypercube Q_n is an *n*-regular graph on 2^n vertices. The vertices are binary strings of length *n* and the edges are "bit flips." Exercise: Compute the number of edges.¹
- Famous graphs include the path P_n , cycle C_n , complete graph K_n and the complete bipartite graph $K_{m,n}$. You should know all the important properties of these graphs and be able to draw them.
- Let G = (V, E) be a simple graph. The complement \overline{G} has the same vertices but the edges and the non-edges have been flipped. Thus if G has n vertices and e edges then \overline{G} has n vertices and $\binom{n}{2} e$ edges. Exercise: Draw the graph $K_{3,4}$ and its complement.
- A u, v-walk of length ℓ in G = (V, E) is a sequence of vertices $u = v_0, v_1, \ldots, v_\ell = v \in V$ such that $\{v_{i-1}, v_i\} \in E$ for all $i \in \{1, \ldots, \ell\}$. A path is a walk with no repeated vertex. By recursion every u, v-walk contains a u, v-path. Proof: Find a repeated vertex and cut out everything in between. Repeat until there is no repeated vertex.
- We say that the graph is connected if for all $u, v \in V$ there exists a u, v-path. More generally, we define the connected components $G = G_1 \cup G_2 \cup \cdots \cup G_k$ so that vertices $u, v \in V$ are connected if and only if they are in the same component. Picture:

¹Hao Huang recently (July 1st, 2019) proved the following result, which settled a 30-year-old conjecture: Let A be a subset of vertices in the hypercube Q_n satisfying $\#A \ge 2^{n-1} + 1$. Then there exists a vertex $a \in A$ that has at least \sqrt{n} neighbors in A.

• If G has n vertices, e edges and k components then $n - k \leq e$. [Remark: This result holds even for multigraphs.]

Proof by induction on e: Fix $n \ge 0$. If e = 0 then k = n and hence n - k = 0 = e. Now suppose that $e \ge 1$ and delete a random edge to obtain a graph G' with n', e', k'. Note that n' = n and e' = e - 1. Since e' < e we can assume by induction that $n' - k' \le e'$. But we also know that $k' \le k + 1$ since deleting an edge creates at most one extra component (and maybe none). Hence

$$e = e' - 1 \ge (n' - k') - 1 = n - 1 - k' \ge n - 1 - (k + 1) = n - k.$$

- If G is a simple graph with n vertices, e edges and k components then $e \leq \binom{n-(k-1)}{2}$. You do not need to prove this. The number of edges is maximized when every component but one is a single vertex and the last component is a complete graph on n (k 1) vertices.
- A circuit is a walk that begins and ends at the same vertex. A cycle is a circuit that has no repeated vertices (except for the basepoint). Every circuit contains a cycle.
- First Application: A graph is called bipartite if it has **no odd cycles**. Equivalently, we can color the vertices with two colors such that no two vertices of the same color share an edge. (You don't need to know the proof.)
- Second Application: A graph is called a forest if it has **no cycles at all**. One can show that this happens exactly when e = n k, i.e., when the number of edges is minimized. A forest with one connected component (k = 1) is called a tree. In other words, a tree is a connected graph with no cycles. Equivalently, a tree is a connected graph on n vertices with e = n 1 edges. Exercise: Draw a forest with n = 12 and k = 3. Verify that the number of edges is e = n k = 9.
- Let G be a tree on vertex set $\{1, 2, ..., n\}$ and let $d_i := \deg(i)$. Since G has e = n 1 edges we must have

$$\sum_{i=1}^{n} d_i = 2(n-1)$$

and hence

$$\sum_{i=1}^{n} (d_i - 1) = \sum_{i=1}^{n} d_i - \sum_{i=1}^{n} 1 = 2(n-1) - n = 2n - 2 - n = n - 2$$

• Cayley's Tree Formula says that

$$\binom{n-2}{d_1-1, d_2-1, \dots, d_n-1} = \# \left\{ \begin{array}{c} \text{trees on vertex set } \{1, \dots, n\} \\ \text{where vertex } i \text{ has degree } d_i \end{array} \right\}.$$

By summing over all possible degrees we obtain

#{labeled trees on *n* vertices} =
$$\sum {\binom{n-2}{d_1-1, d_2-1, \dots, d_n-1}} = n^{n-2}.$$

Exercise: Verify that this last step follows from the multinomial theorem.

• Prüfer's proof of Cayley's Formula: Given a tree T on $\{1, 2, ..., n\}$, delete the smallest leaf (vertex of degree one) and let p_1 be the name of its parent. Repeat to obtain a sequence $(p_1, p_2, ..., p_{n-2})$ called the *Prüfer code* of the tree. One can show that every word of length n-2 from the alphabet $\{1, ..., n\}$ is the Prüfer code of some tree. (You don't need to show this.) Furthermore, the number i shows up exactly $d_i - 1$ times in the code. Example: