Topics from Chapter 1

- Sum of consecutive integers: The following equation holds for all integers $n \geqslant 1$:

$$
1+2+3+\cdots+n=\sum_{k=1}^{n} k=\frac{n(n+1)}{2}=\binom{n+1}{2} .
$$

- Proof by induction:

Base Case. The formula holds when $n=1$ because $1=1(1+1) / 2$.
Induction Step. Now fix some $n \geqslant 1$ and assume for induction that

$$
1+2+\cdots+n=n(n+1) / 2 .
$$

In this case we also have

$$
\begin{aligned}
1+2+\cdots+(n+1) & =(1+2+\cdots+n)+(n+1) \\
& =n(n+1) / 2+(n+1) \\
& =(n+1)[n / 2+1] \\
& =(n+1)(n+2) / 2 .
\end{aligned}
$$

- Principle of Induction: Let $P(n)$ be a statement depending on an integer $n \in \mathbb{Z}$. If (Base Case) $P(b)=T$ for some $b \in \mathbb{Z}$ and if (Induction Step) $P(n) \Rightarrow P(n+1)$ for all $n \geqslant b$ then we conclude that $P(n)=T$ for all $n \geqslant b$.
- Sum of consecutive squares: The following equation holds for all integers $n \geqslant 1$:

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

Exercise: Prove this by induction.

- Thus, for any numbers a, b, c we have

$$
\begin{aligned}
\sum_{k=1}^{n}\left(a k^{2}+b k+c\right) & =a\left(\sum_{k=1}^{n} k^{2}\right)+b\left(\sum_{k=1}^{n} k\right)+c\left(\sum_{k=1}^{n} 1\right) \\
& =a \cdot \frac{n(n+1)(2 n+1)}{6}+b \cdot \frac{n(n+1)}{2}+c n .
\end{aligned}
$$

- The Fibonacci numbers are defined by recursion:

$$
F_{n}:= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { otherwise }\end{cases}
$$

- Strong Induction: Let $P(n)$ be a statement depending on an integer $n \in \mathbb{Z}$. If (Base Case) $P(b)=T$ for some $b \in \mathbb{Z}$ and if (Induction Step)

$$
[P(b) \wedge P(b+1) \wedge \cdots \wedge P(n)] \Rightarrow P(n+1) \quad \text { for all } n \geqslant b
$$

then we conclude that $P(n)=T$ for all $n \geqslant b$.

- Let $\varphi=(1+\sqrt{5}) / 2$ and $\psi=(1-\sqrt{5}) / 2$ be the two roots of the equation $x^{2}-x-1=0$. It follows that $\alpha^{2}=\alpha+1$ and hence $\alpha^{n}=\alpha^{n-1}+\alpha^{n-2}$ for all n, and the same formula holds for β. Now I claim that

$$
F_{n}=\frac{1}{\sqrt{5}}\left[\varphi^{n}-\psi^{n}\right] \quad \text { for all } n \geqslant 0
$$

Proof by Strong Induction:
Bases Cases. When $n=0$ we have $\left(\varphi^{0}-\psi^{0}\right) / \sqrt{5}=0=F_{0}$. When $n=1$ we have $\varphi-\psi=\sqrt{5}$ and hence $\left(\varphi^{1}-\psi^{1}\right) / \sqrt{5}=1=F_{1}$. That's enough.
Induction Step. Fix some $n \geqslant 0$ and assume for induction that the formula holds for all smaller values of n. Then we have

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2} & & \text { definition } \\
& =\frac{1}{\sqrt{5}}\left[\varphi^{n-1}-\psi^{n-1}\right]+\frac{1}{\sqrt{5}}\left[\varphi^{n-2}-\psi^{n-2}\right] & & \text { induction } \\
& =\frac{1}{\sqrt{5}}\left[\varphi^{n-1}+\varphi^{n-2}\right]-\frac{1}{\sqrt{5}}\left[\psi^{n-1}+\psi^{n-2}\right] & & \\
& =\frac{1}{\sqrt{5}}\left[\varphi^{n}\right]-\frac{1}{\sqrt{5}}\left[\psi^{n}\right] & & \\
& =\frac{1}{\sqrt{5}}\left[\varphi^{n}-\psi^{n}\right] . & &
\end{aligned}
$$

- For integers $0 \leqslant k \leqslant n$ we define the entries of Pascal's triangle by recursion:

$$
\binom{n}{k}:= \begin{cases}1 & k=0 \text { or } k=n, \\ \binom{n-1}{k-1}+\binom{n-1}{k} & 0<k<n .\end{cases}
$$

- Then one can prove the following two theorems by recursion.

Closed Formula. For all integers $0 \leqslant k \leqslant n$ we have

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Exercise: Prove this. Don't forget that $0!:=1$.
Binomial Theorem. For all numbers x and for all integers $n \geqslant 0$ we have

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

You do not need to prove this. [Here is the proof: $(1+x)^{n}=x(1+x)^{n-1}+(1+x)^{n-1}$.]

Topics from Chapter 2

- A set is "a collection of things," where order and repetition do not matter:

$$
\{1,2,3\}=\{3,1,2\}=\{1,1,2,2,3,3,2,3,1,1\} .
$$

- We write $A \subseteq B$ to mean $\forall x, x \in A \Rightarrow x \in B$ and we say " A is a subset of B."
- From now on, all sets are subsets of a universal set U. Then for all $A \subseteq U$ we define

$$
A^{\prime}:=\{x \in U: x \notin A\}
$$

and for all $A, B \subseteq U$ we define

$$
\begin{aligned}
& A \cup B:=\{x \in U: x \in A \text { or } x \in B\}, \\
& A \cap B:=\{x \in U: x \in A \text { and } x \in B\} .
\end{aligned}
$$

- The pictures are called Venn diagrams:

- The algebra of sets satisfies various algebraic identities, such as:

$$
A \cup \varnothing=A
$$

$$
\begin{aligned}
A \cap U & =A \\
A \cap(B \cup C) & =(A \cap B) \cup(A \cap C) \\
(A \cap B)^{\prime} & =A^{\prime} \cup B^{\prime} \\
& \vdots
\end{aligned}
$$

These identities can be "proved" using Venn diagrams, but mostly they are just obvious.

- The Cartesian product of sets S and T is the set of "ordered pairs:"

$$
S \times T:=\{(s, t): s \in S, t \in T\}
$$

It the sets are finite then $\#(S \times T)=\# S \times \# T$, hence the name.

- A function $f: S \rightarrow T$ from set S (called the domain) to a set T (called the codomain) is a subset of the Cartesian product: $f \subseteq S \times T$. There is only one rule: For each $s \in S$ there exists a unique $t \in T$ such that $(s, t) \in f$. We give this unique element t a special name:

$$
" t=f(s) . "
$$

If S and T are finite then

$$
\#\{\text { functions } S \rightarrow T\}=(\# T)^{(\# S)}
$$

- A function $f: S \rightarrow T$ is injective if $f\left(s_{1}\right)=f\left(s_{2}\right)$ implies $s_{1}=s_{2}$. The function is surjective if for all $t \in T$ there exists some $s \in S$ such that $f(s)=t$. The function is bijective if it is both injective and surjective. Observe that

$$
\begin{array}{r}
\exists \text { injective } f: S \rightarrow T \Rightarrow \# S \leqslant \# T \\
\exists \text { surjective } f: S \rightarrow T \Rightarrow \# S \geqslant \# T \\
\exists \text { bijective } f: S \rightarrow T \Rightarrow \# S=\# T
\end{array}
$$

- Example: There exists a bijection between the set of subsets of U and the set of functions $U \rightarrow\{T, F\}$, hence

$$
\#\{\text { subsets of } U\}=\#\{\text { functions } U \rightarrow\{T, F\}\}=(\#\{T, F\})^{(\# U)}=2^{(\# U)}
$$

Exercise: Describe this bijection.

- A Boolean function has the form $f:\{T, F\}^{n} \rightarrow\{T, F\}^{m}$. The number of such functions is $\left(2^{m}\right)^{\left(2^{n}\right)}$. Most of the 16 functions $f:\{T, F\}^{2} \rightarrow\{T, F\}$ have special names:

		NOT P	P OR Q	P AND Q	P XOR Q	IF P THEN Q
P	Q	$\neg P$	$P \vee Q$	$P \wedge Q$	$P \oplus Q$	$P \Rightarrow Q$
T	T	F	T	T	F	T
T	F	F	T	F	T	F
F	T	T	T	F	T	T
F	F	T	F	F	F	T

- The algebra of sets and Boolean functions are related as follows:

$$
\begin{aligned}
A^{\prime} & =\{x \in U: \neg(x \in A)\}, \\
A \cup B & =\{x \in U:(x \in A) \vee(x \in B)\}, \\
A \cap B & =\{x \in U:(x \in A) \wedge(x \in B)\} .
\end{aligned}
$$

They satisfy all of the same algebraic identities.

- De Morgan's Laws make more sense in terms of logic. For all $x \in U$ let $P(x) \in\{T, F\}$. Then we have

$$
\neg(\forall x \in U, P(x))=\neg\left(\bigwedge_{x \in U} P(x)\right)=\left(\bigvee_{x \in U} \neg P(x)\right)=(\exists x \in U, \neg P(x))
$$

and

$$
\neg(\exists x \in U, P(x))=\neg\left(\bigvee_{x \in U} P(x)\right)=\left(\bigwedge_{x \in U} \neg P(x)\right)=(\forall x \in U, \neg P(x))
$$

Exercise: Translate these statements into English.

- The Principle of the Contrapositive says that $(P \Rightarrow Q)=(\neg Q \Rightarrow \neg P)$ for all $P, Q \in$ $\{T, F\}$. We can prove it with a truth table:

P	Q	$P \Rightarrow Q$	$\neg Q$	$\neg P$	$\neg Q \Rightarrow \neg P$
T	T	T	F	F	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	T	T	T

- Or we can prove it using Boolean algebra. First check that $(P \Rightarrow Q)=(\neg P \vee Q)$ for all $P, Q \in\{T, F\}$. Then we have

$$
(\neg Q \Rightarrow \neg P)=(\neg(\neg Q) \vee \neg P)=(Q \vee \neg P)=(\neg P \vee Q)=(P \Rightarrow Q) .
$$

- We can draw many pictures of a Boolean function $f:\{T, F\}^{m} \rightarrow\{T, F\}^{n}$ by wiring together the following logic gates:

- For example, let $f:\{T, F\}^{3} \rightarrow\{T, F\}$ be defined by the following table:

P	Q	R	$f(P, Q, R)$
T	T	T	T
T	T	F	T
T	F	T	T
T	F	F	F
F	T	T	T
F	T	F	F
F	F	T	F
F	F	F	F

By naming the disjunction of the T-rows we obtain the "disjunctive normal form:"

$$
f(P, Q, R)=(P \wedge Q \wedge R) \vee(P \wedge Q \wedge \neg R) \vee(P \wedge \neg Q \wedge R) \vee(\neg P \wedge Q \wedge R)
$$

We can find a simpler expression if we draw the Venn diagram:

$$
\begin{aligned}
& f(P, Q, R) \\
& =(P \wedge Q) \vee(P \wedge R) \vee(Q \wedge R)
\end{aligned}
$$

And here is a picture of the corresponding circuit:

Topics from Chapter 3

- The integers $(\mathbb{Z},=,<,+, \times, 0,1)$ are defined by a bunch of obvious axioms, such as:

$$
\begin{aligned}
a & =a \\
a+0 & =a \\
1 a & =a \\
a+(b+c) & =(a+b)+c, \\
a(b+c) & =a b+a c
\end{aligned}
$$

together with one non-obvious axiom called induction or well-ordering.

- The Well-Ordering Principle: Any non-empty set of integers that is bounded below has a least element. In other words, if $S \subseteq \mathbb{Z}$ satisfies $S \neq \varnothing$ and if $\exists b \in \mathbb{Z}, \forall a \in S, b \leqslant a$ then $\exists m \in S, \forall a \in S, m \leqslant a$.
- Application of Well-Ordering: 1 is the least positive integer. In other words, there are no integers between 0 and 1 .
Proof: Let S be the set of positive integers, which is bounded below by 0 . Since S is nonempty $(1 \in S)$ we conclude from well-ordering that S has a least element $m \in S$. I claim that $m=1$. Indeed, since 1 is positive and since m is the least positive integer we must have $m \leqslant 1$. Now assume for contradiction that $m<1$. Then multiplying both sides of $m<1$ by m gives $m^{2}<m$ and multiplying both sides of $0<m$ by m gives $0<m^{2}$, hence m^{2} is a positive integer that is smaller than m. Contradiction. We conclude that $m=1$ and hence 1 is the least positive integer.
- Another form of Well-Ordering: There does not exist an infinite decreasing sequence of integers that is bounded below:

$$
r_{0}>r_{1}>r_{2}>r_{3}>\cdots \geqslant b .
$$

This is the reason that algorithms terminate.

- The Division Algorithm: Given $a, b \in \mathbb{Z}$ with $a \geqslant 0$ and $b>0$ there exist unique $q, r \in \mathbb{Z}$ such that

$$
\left\{\begin{array}{l}
a=q b+r, \\
0 \leqslant r<b
\end{array}\right.
$$

Proof of Existence: Keep subtracting b from a until you get a number less than b. Call it $r:=a-q b<b$. We must have $r \geqslant 0$ because the number was greater than or equal to b on the second last iteration. If the algorithm went on forever we would obtain an infinite sequence:

$$
a>a-b>a-2 b>a-3 b>\cdots \geqslant b .
$$

Hence the algorithm must terminate with $a=q b+r$ and $0 \leqslant r<b$.

You don't need to know the proof of uniqueness.

- First Application of Division: Base b Arithmetic. Fix some integer $b \geqslant 2$. Then for each integer $n \geqslant 0$ there exists a unique sequence $r_{0}, r_{1}, r_{2}, \ldots \in\{0,1, \ldots, b-1\}$ such that

$$
n=r_{0}+r_{1} b+r_{2} b^{2}+r_{3} b^{3}+\cdots .
$$

In this case we write $n=\left(\cdots r_{2} r_{1} r_{0}\right)_{b}$.
Proof: Divide n by b to get $b=q_{0} b+r_{0}$. Then continue to divide the quotient by b to get $q_{i-1}=q_{i} b+r_{i}$. The algorithm must terminate because $b>1$ implies $q_{i-1}>q_{i}$. Uniqueness follows from uniqueness of remainders.

- Example: Express 101 in base 3:

$$
\left\{\begin{array}{rlr}
\mathbf{1 0 1} & =3 \cdot \mathbf{3 3} & +2 \\
\mathbf{3 3} & =3 \cdot \mathbf{1 1} & +0 \\
\mathbf{1 1} & =3 \cdot \mathbf{3} & +2 \\
\mathbf{3} & =3 \cdot \mathbf{1} & +0 \\
\mathbf{1} & =3 \cdot \mathbf{0} & +1
\end{array}\right\} \quad \Longrightarrow \quad(101)_{10}=(10202)_{3} .
$$

- Second Application of Division: Euclidean Algorithm. To compute the gcd of $a, b \in \mathbb{Z}$ with $b>0$, first divide a by b to get $a=q_{1} b+r_{1}$. Then divide b by r_{1} to get $b=q_{2} r_{1}+r_{2}$. Continue to divide r_{i-1} by r_{i} to get a decreasing sequence of remainders:

$$
b>r_{1}>r_{2}>\cdots \geqslant 0
$$

By well-ordering this must stop. The last non-zero remainder equals $\operatorname{gcd}(a, b)$.
Proof: If $r_{i-1}=q_{i+1} r_{i}+r_{i+1}$ then $\operatorname{gcd}\left(r_{i-1}, r_{i}\right)=\operatorname{gcd}\left(r_{i}, r_{i+1}\right)$. More generally, if $a=x b+c$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)$. Indeed, let $d=\operatorname{gcd}(a, b)$ and $e=\operatorname{gcd}(b, c)$. Since $d \mid a$ and $d \mid b$ one can check that d divides $c=a-x b$, hence $d \leqslant e$. Conversely, since $e \mid b$ and $e \mid c$ one can check that e divides $a=x b+c$, hence $e \leqslant d$.

- Example: Compute gcd(101, 82):

$$
\left\{\begin{array}{rll}
\mathbf{1 0 1} & =1 \cdot \mathbf{8 2} & +\mathbf{1 9} \\
\mathbf{8 2} & =4 \cdot \mathbf{1 9} & +\mathbf{6} \\
\mathbf{1 9} & =3 \cdot \mathbf{6} & +\mathbf{1} \\
\mathbf{6} & =6 \cdot \mathbf{1} & +\mathbf{0}
\end{array}\right\} \quad \Longrightarrow \quad \operatorname{gcd}(101,82)=1
$$

Bonus: The quotients tell us that

$$
\frac{101}{82}=1+\frac{1}{4+\frac{1}{3+\frac{1}{6}}}
$$

Topics from Chapter 4

- The Multiplication Principle: When a sequence of choices is made, the possibilities multiply. Sometimes this is drawn as a branching "decision tree."
- Words: The number of words of length k from an alphabet is size n is

$$
\underbrace{n}_{1 \text { st letter }} \times \underbrace{n}_{\text {2nd letter }} \times \cdots \times \underbrace{n}_{k \text { th letter }}=n^{k} .
$$

- Permutations: The number of permutations of k things taken from n things is

$$
\underbrace{n}_{\text {1st letter }} \times \underbrace{(n-1)}_{2 \text { nd letter }} \times \cdots \times \underbrace{(n-(k-1))}_{k \text { th letter }}=n(n-1) \cdots(n-k+1) .
$$

If $k \leqslant n$ then we can simplify this to

$$
n(n-1) \cdots(n-k+1)=n(n-1) \cdots(n-k+1) \frac{(n-k) \cdots 3 \cdot 2 \cdot 1}{(n-k) \cdots 3 \cdot 2 \cdot 1}=\frac{n!}{(n-k)!}
$$

- Combinations: Let ${ }_{n} C_{k}$ be the number of subsets of size k from a set of size n, equivalently the number of ways to choose k unordered things without repetition from n things. Furthermore, let ${ }_{n} P_{k}$ be the number of ways to choose k ordered things without repetition. We showed above that

$$
{ }_{n} P_{k}=\frac{n!}{(n-k)!} .
$$

On the other hand, we can create an ordered selection by first choosing an unordered selection and then ordering it:

$$
{ }_{n} P_{k}=\underbrace{{ }_{n} C_{k}}_{\text {choose unordered selection }} \times \underbrace{k!}_{\text {then put it in order }} .
$$

It follows that

$$
{ }_{n} C_{k}=\frac{{ }_{n} P_{k}}{k!}=\frac{n!/(n-k)!}{k!}=\frac{n!}{k!(n-k)!}=\binom{n}{k} .
$$

Was that a surprise?

- We can prove the same result by induction:

Boundary Cases. If $k=0$ or $n=0$ then we have ${ }_{n} C_{k}=1$ because there is one way to choose nothing and one way to choose everything.

Recursion. Let S be the set of subsets of size k from $\{1,2, \ldots, n\}$ so that $\# S=$ ${ }_{n} C_{k}$. We can break this set into two pieces:

$$
\begin{aligned}
S^{\prime} & :=\{A \subseteq\{1, \ldots, n\}: \# A=k \text { and } n \in A\}, \\
S^{\prime \prime} & :=\{A \subseteq\{1, \ldots, n\}: \# A=k \text { and } n \notin A\} .
\end{aligned}
$$

Exercise: Explain why $\# S^{\prime}={ }_{n-1} C_{k-1}$ and $\# S^{\prime \prime}={ }_{n-1} C_{k}$. It follows that

$$
{ }_{n} C_{k}=\# S=\# S^{\prime}+\# S^{\prime \prime}={ }_{n-1} C_{k-1}+{ }_{n-1} C_{k} .
$$

- Multisets: The number of non-negative solutions $x_{1}, \ldots, x_{n} \in \mathbb{N}$ to the equation $x_{1}+$ $\cdots+x_{n}=k$ is

$$
\left(\binom{n}{k}\right):=\binom{n+k-1}{k} .
$$

This is also the number of ways to choose k (unordered) gallons of ice cream from n possible flavors (think of x_{i} as the number of gallons of flavor i). We could also call these "multisubsets," i.e., subsets with possible repetition.

Proof: Encode a choice as a binary string containing k copies of 1 and $n-1$ copies of 0 :

$$
\underbrace{1 \cdots 1}_{\text {value of } x_{1}} 0 \underbrace{1 \cdots 1}_{\text {value of } x_{2}} 0 \cdots 0 \underbrace{1 \cdots 1}_{\text {value of } x_{n}}
$$

The number of such binary strings is $\binom{k+(n-1)}{k}$ because we need to choose k positions to place the 1's from $k+(n-1)$ possible positions. Equivalently, we can choose $n-1$ positions for the 0 's.

- Binomial coefficients are symmetric: $\binom{n}{k}=\binom{n}{n-k}$.

Counting Proof: Let A be the set of subsets of size k from $\{1,2, \ldots, n\}$ and let B be the set of subsets of size $n-k$. Then "complementation" is a bijection $A \leftrightarrow B$, hence $\# A=\# B$. Equivalently, let A be the set of binary strings of length n with k copies of 1 and let B be the set of binary strings of length n with $n-k$ copies of 1 . Then "flipping all the bits" is a bijection $A \leftrightarrow B$.

- Substituting $x=1$ or $x=-1$ into $(1+x)^{n}=\sum_{k}\binom{n}{k} x^{k}$ gives:

$$
\begin{aligned}
& 2^{n}=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}, \\
& 0^{n}=\binom{n}{0}-\binom{n}{1}+\cdots+(-1)^{n}\binom{n}{n},
\end{aligned}
$$

Differentiating and then substituting $x=1$ gives:

$$
\begin{aligned}
n(1+x)^{n-1} & =\binom{n}{1}+2\binom{n}{2} x+3\binom{n}{3} x^{2}+\cdots+n\binom{n}{n} x^{n-1} \\
n 2^{n-1} & =\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\cdots+n\binom{n}{n} .
\end{aligned}
$$

- Exercise: Give counting proofs for the three previous identities. For the first identity, group subsets by their number of elements. For the second, flip one bit to obtain a bijection between even and odd subsets. For the third, choose choose a committee and then choose one person from the committee to be the president.
- The Multinomial Theorem says that

$$
\left(a_{1}+a_{2}+\cdots a_{n}\right)^{\ell}=\sum\binom{\ell}{k_{1}, k_{2}, \ldots, k_{n}} a_{1}^{k_{1}} a_{2}^{k_{2}} \cdots a_{n}^{k_{n}}
$$

where the multinomial coefficients are defined by

$$
\binom{\ell}{k_{1}, k_{2}, \ldots, k_{n}}=\frac{\ell!}{k_{1}!k_{2}!\cdots k_{n}!}
$$

and where the sum is taken over all $k_{1}, \ldots, k_{n} \in \mathbb{N}$ such that $k_{1}+\cdots k_{n}=\ell$.

- Substituting $a_{1}=\cdots=a_{n}=1$ into the multinomial theorem gives

$$
n^{\ell}=\sum\binom{\ell}{k_{1}, \ldots, k_{n}}
$$

What does this mean? The left side counts the words of length ℓ from the alphabet $\left\{a_{1}, \ldots, a_{n}\right\}$. The right side counts the same words, but it groups them according to the number of each type of letter. We use the fact that

$$
\binom{\ell}{k_{1}, k_{2}, \ldots, k_{n}}=\#\left\{\begin{array}{c}
\text { words of length } \ell \text { containing } \\
k_{i} \text { copies of } a_{i} \text { for each } i
\end{array}\right\}
$$

- Example: How many arrangements of the letters $e, f, f, l, o, r, e, s, c, e, n, c, e$?

Topics from Chapter 5

- A simple graph is a set of vertices, together with a set of unordered pairs of vertices, called edges. For example, let $V=\{1,2,3,4,5,6\}$ and $E=\{\{1,2\},\{2,3\},\{1,3\},\{3,4\},\{4,5\}\}$.
- It is helpful to draw a graph, but the way you draw it is not important:

- If you permute labels (or if you don't draw labels) then you obtain isomorphic graphs:

- To prove that two graphs are isomorphic you must label them. To prove that two graphs are not isomorphic you need a trick.
- The easiest trick is to look at the degrees, since these are preserved under isomorphism. Let $G=(V, E)$ be a simple graph. Then for each vertex $u \in V$ we define its degree as

$$
\operatorname{deg}(u):=\#\{v \in V:\{u, v\} \in E\} .
$$

- The Handshaking Lemma says that

$$
\sum_{u \in V} \operatorname{deg}(u)=2 \cdot \# E .
$$

Proof: Let L be the set of lollipops in the graph (a lollipop is an edge together with one of its vertices). By choosing the edge first we have $\# L=2 \cdot \# E$. By choosing the vertex first we have $\# L=\sum_{u \in V} \operatorname{deg}(u)$.

- It follows that the number of odd-degree vertices is even. For example, there is no graph with degree sequence $2,2,2,3,3,4,5$ because $2+2+2+3+3+4+5$ is an odd number.
- A graph is called d-regular if each vertex has degree d. If G is a d-regular graph with n vertices then it follows from the First Theorem that $d n$ is even. For example, there does not exist a 3 -regular graph on 7 vertices. Exercise: Draw a 3 regular graph on 8 vertices. Exercise: Prove that there exist two non-isomorphic 3-regular graphs on 6 vertices.
- Example: The hypercube Q_{n} is an n-regular graph on 2^{n} vertices. The vertices are binary strings of length n and the edges are "bit flips." Exercise: Compute the number of edges ${ }^{1}$
- Famous graphs include the path P_{n}, cycle C_{n}, complete graph K_{n} and the complete bipartite graph $K_{m, n}$. You should know all the important properties of these graphs and be able to draw them.
- Let $G=(V, E)$ be a simple graph. The complement \bar{G} has the same vertices but the edges and the non-edges have been flipped. Thus if G has n vertices and e edges then \bar{G} has n vertices and $\binom{n}{2}-e$ edges. Exercise: Draw the graph $K_{3,4}$ and its complement.
- A u, v-walk of length ℓ in $G=(V, E)$ is a sequence of vertices $u=v_{0}, v_{1}, \ldots, v_{\ell}=v \in V$ such that $\left\{v_{i-1}, v_{i}\right\} \in E$ for all $i \in\{1, \ldots, \ell\}$. A path is a walk with no repeated vertex. By recursion every u, v-walk contains a u, v-path. Proof: Find a repeated vertex and cut out everything in between. Repeat until there is no repeated vertex.
- We say that the graph is connected if for all $u, v \in V$ there exists a u, v-path. More generally, we define the connected components $G=G_{1} \cup G_{2} \cup \cdots \cup G_{k}$ so that vertices $u, v \in V$ are connected if and only if they are in the same component. Picture:

[^0]

- If G has n vertices, e edges and k components then $n-k \leqslant e$. [Remark: This result holds even for multigraphs.]

Proof by induction on e : Fix $n \geqslant 0$. If $e=0$ then $k=n$ and hence $n-k=0=e$. Now suppose that $e \geqslant 1$ and delete a random edge to obtain a graph G^{\prime} with $n^{\prime}, e^{\prime}, k^{\prime}$. Note that $n^{\prime}=n$ and $e^{\prime}=e-1$. Since $e^{\prime}<e$ we can assume by induction that $n^{\prime}-k^{\prime} \leqslant e^{\prime}$. But we also know that $k^{\prime} \leqslant k+1$ since deleting an edge creates at most one extra component (and maybe none). Hence

$$
e=e^{\prime}-1 \geqslant\left(n^{\prime}-k^{\prime}\right)-1=n-1-k^{\prime} \geqslant n-1-(k+1)=n-k .
$$

- If G is a simple graph with n vertices, e edges and k components then $e \leqslant(\underset{2}{n-(k-1)})$. You do not need to prove this. The number of edges is maximized when every component but one is a single vertex and the last component is a complete graph on $n-(k-1)$ vertices.
- A circuit is a walk that begins and ends at the same vertex. A cycle is a circuit that has no repeated vertices (except for the basepoint). Every circuit contains a cycle.
- First Application: A graph is called bipartite if it has no odd cycles. Equivalently, we can color the vertices with two colors such that no two vertices of the same color share an edge. (You don't need to know the proof.)
- Second Application: A graph is called a forest if it has no cycles at all. One can show that this happens exactly when $e=n-k$, i.e., when the number of edges is minimized. A forest with one connected component $(k=1)$ is called a tree. In other words, a tree is a connected graph with no cycles. Equivalently, a tree is a connected graph on n vertices with $e=n-1$ edges. Exercise: Draw a forest with $n=12$ and $k=3$. Verify that the number of edges is $e=n-k=9$.
- Let G be a tree on vertex set $\{1,2, \ldots, n\}$ and let $d_{i}:=\operatorname{deg}(i)$. Since G has $e=n-1$ edges we must have

$$
\sum_{i=1}^{n} d_{i}=2(n-1)
$$

and hence

$$
\sum_{i=1}^{n}\left(d_{i}-1\right)=\sum_{i=1}^{n} d_{i}-\sum_{i=1}^{n} 1=2(n-1)-n=2 n-2-n=n-2
$$

- Cayley's Tree Formula says that

$$
\binom{n-2}{d_{1}-1, d_{2}-1, \ldots, d_{n}-1}=\#\left\{\begin{array}{l}
\text { trees on vertex set }\{1, \ldots, n\} \\
\text { where vertex } i \text { has degree } d_{i}
\end{array}\right\} .
$$

By summing over all possible degrees we obtain

$$
\#\{\text { labeled trees on } n \text { vertices }\}=\sum\binom{n-2}{d_{1}-1, d_{2}-1, \ldots, d_{n}-1}=n^{n-2}
$$

Exercise: Verify that this last step follows from the multinomial theorem.

- Prüfer's proof of Cayley's Formula: Given a tree T on $\{1,2, \ldots, n\}$, delete the smallest leaf (vertex of degree one) and let p_{1} be the name of its parent. Repeat to obtain a sequence $\left(p_{1}, p_{2}, \ldots, p_{n-2}\right)$ called the Prüfer code of the tree. One can show that every word of length $n-2$ from the alphabet $\{1, \ldots, n\}$ is the Prüfer code of some tree. (You don't need to show this.) Furthermore, the number i shows up exactly $d_{i}-1$ times in the code. Example:

[^0]: ${ }^{1}$ Hao Huang recently (July 1st, 2019) proved the following result, which settled a 30 -year-old conjecture: Let A be a subset of vertices in the hypercube Q_{n} satisfying $\# A \geqslant 2^{n-1}+1$. Then there exists a vertex $a \in A$ that has at least \sqrt{n} neighbors in A.

