1. Boolean Algebra.

(a) Draw the truth table for $P \Rightarrow Q$.

Here is the truth table. For fun, we also observe that $P \Rightarrow Q = (\neg P) \lor Q$.

P	Q	$\neg P$	$(\neg P) \lor Q$	$P \Rightarrow Q$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

(b) Prove that $(P \Rightarrow Q) = (\neg Q \Rightarrow \neg P)$ using a truth table.

Observe that the final columns in both tables are the same.

P	Q	$\neg Q$	$\neg P$	$\neg Q \Rightarrow \neg P$
T	T	F	F	T
T	F	T	F	F
F	T	F	T	T
F	F	T	T	T

Alternatively, here's an abstract-algebraic proof:

$$(\neg Q \Rightarrow \neg P) = ((\neg \neg Q) \lor \neg P) = (Q \lor \neg P) = (\neg P \lor Q) = (P \Rightarrow Q).$$

(c) Express the statement $P \Leftrightarrow Q$ using only the boolean operations \vee, \wedge, \neg .

Recall that $P \Leftrightarrow Q$ means $(P \Rightarrow Q) \land (Q \Rightarrow P)$. Therefore from the observation in part (a) we can write

$$(P \Leftrightarrow Q) = (P \Rightarrow Q) \land (Q \Rightarrow P) = (\neg P \lor Q) \land (\neg Q \lor P).$$

Alternatively, we could first draw the truth table:

$$\begin{array}{c|ccc} P & Q & P \Leftrightarrow Q \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & T \end{array}$$

Since this function has T's in the $P \wedge Q$ row and the $\neg P \wedge \neg Q$ row, the disjunctive normal form is

$$(P \Leftrightarrow Q) = (P \land Q) \lor (\neg P \land \neg Q).$$

2. Induction. Your goal in this problem is to prove the following identity by induction.

$$1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + n \cdot n! = (n+1)! - 1.$$

(a) State **exactly** what you want to prove. Make sure to define P(n).

For all integers $n \geq 1$ we define the statement

$$P(n) = 1 \cdot 1! + 2 \cdot 2! + \dots + n! = (n+1)! - 1.$$

We will use induction to prove that P(n) is true for all $n \ge 1$.

(b) State and prove the base case.

We observe that the statement P(1) is true:

$$P(1) = 1 \cdot 1! = (1+1)! - 1 = 1 = 2 - 1 = T.$$

(c) State the prove the induction step.

Now consider an arbitrary integer $k \ge 1$ and let us assume for induction that P(k) is true. In other words, let us assume that

$$1 \cdot 1! + 2 \cdot 2! + \dots + k \cdot k! = (k+1)! - 1.$$

But then we have

$$\begin{aligned} &1 \cdot 1! + 2 \cdot 2! + \dots + (k+1) \cdot (k+1)! \\ &= [1 \cdot 1! + 2 \cdot 2! + \dots + k \cdot k!] + (k+1) \cdot (k+1)! \\ &= [(k+1)! - 1] + + (k+1) \cdot (k+1)! \\ &= [(k+1)! + (k+1) \cdot (k+1)!] - 1 \\ &= [1 + (k+1)] \cdot (k+1)! - 1 \\ &= (k+2) \cdot (k+1)! - 1 \\ &= (k+2)! - 1, \end{aligned}$$
 induction

which means that P(k+1) is also true.

[Remark: Where did I come up with this identity? Consider the collection of all words that can be made with the symbols $a_1, a_2, \ldots, a_{n+1}$. We will say the the symbol a_i is "happy" if it is placed in the *i*th position from the left. Note that every word except $a_1a_2 \cdots a_{n+1}$ has at least one unhappy symbol. Therefore the number of words with at least one unhappy symbol is (n+1)!-1. On the other hand, let us consider the collection of words in which the **leftmost unhappy symbol** occurs in the *k*th position from the **right**. One can argue that there are $(k-1) \cdot (k-1)!$ such words. Now sum over k.]

3. Binomial Theorem.

(a) Accurately state the Binomial Theorem.

Fix a non-negative integer $n \geq 0$. Then for all numbers x and y we have

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} = \sum_{k=0}^n \frac{n!}{k!(n-k)!} x^k y^{n-k}.$$

(b) Prove that a set with n elements has an equal number of "even subsets" (subsets with an even number of elements) and "odd subsets" (subsets with an odd number of elements). [Hint: Just plug something in.]

Since the binomial theorem is true for all numbers x and y, we may substitute x = -1 and y = 1 to obtain

$$(-1+1)^n = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + \binom{n}{n} (-1)^n$$
$$0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + \binom{n}{n} (-1)^n$$
$$\binom{n}{1} + \binom{n}{3} + \dots = \binom{n}{0} + \binom{n}{2} + \dots$$

Since $\binom{n}{k}$ is the number of subsets with size k, the last equation tells us that the number of odd-sized subsets equals the number of even-sized subsets.

(c) How many subsets of $\{1, 2, 3, 4, 5, 6\}$ have an **even** number of elements?

The total number of subsets of $\{1, 2, 3, 4, 5, 6\}$ is

$$2^{\#\{1,2,3,4,5,6\}} = 2^6 = 64$$

Now let E and O be the numbers of even and odd subsets, so that E + O = 64. But we know from part (b) that E = O, so that

$$E + O = 64$$

$$E + E = 64$$

$$2E = 64$$

$$E = 32$$

[Remark: In general, the number of even subsets of $\{1,2\ldots,n\}$ is 2^{n-1} .]

- **4. Probability.** Consider a biased coin with P("heads") = 1/3.
 - (a) If you flip the coin n times. What is the probability that you get "heads" **exactly** k times?

The probability of getting heads exactly k times in n flips of a coin is

$$\binom{n}{k}P(\text{``heads''})^kP(\text{``tails''})^{n-k} = \binom{n}{k}\left(\frac{1}{3}\right)^k\left(\frac{2}{3}\right)^{n-k} = \binom{n}{k}\frac{2^{n-k}}{3^n}$$

(b) If you flip the coin 5 times, what is the probability that you get "heads" an **even** number of times?

In this case we have n = 5. To compute the probability of an even number of heads, we sum the probabilities from (a) over all even values of k:

(c) If you flip the coin 111 times, how many times do you expect to get "heads"?

Consider a general coin with P(``heads'') = p and P(``tails'') = 1 - p. If we flip this coin n times then on average we will expect to get heads pn times.

Since our coin has p = 1/3, if we flip the coin n = 111 times then on average we expect to see heads

$$np = 111 \cdot 1/3 = 37$$
 times.

5. Integers.

(a) Accurately state the Division Theorem for integers. [Hint: For all $a,b\in\mathbb{Z}$ with $b\neq 0$...]

For all integers $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist unique integers $q, r \in \mathbb{Z}$ satisfying the following two properties:

$$\begin{cases} a = qb + r, \\ 0 \le r < |b|. \end{cases}$$

(b) Accurately state the definition of an "even" integer.

We say an integer is even if it is "divisible by 2." In other words:

"n is even" = "
$$2|n$$
" = " $\exists k \in \mathbb{Z}, 2k = n$."

(c) Consider an integer $n \in \mathbb{Z}$. Prove that if n^2 is even then n is even.

We wish to prove that $2|n^2$ implies 2|n. In order to do this we will instead prove the (equivalent) contrapositive statement that $2 \nmid n$ implies $2 \nmid n^2$. We will also use the fact (proved from the division theorem) that every non-even (i.e., odd) number has the form 2k+1 for some $k \in \mathbb{Z}$.

So let us suppose that $n \in \mathbb{Z}$ is odd; say n = 2k + 1 for some $k \in \mathbb{Z}$. It follows that $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 = 2 \cdot (\text{some integer}) + 1$ is also odd.

6. Bonus. Give a **counting proof** of the following identity:

$$k\binom{n}{k} = n\binom{n-1}{k-1}.$$

Proof: Consider integers $0 \le k \le n$. From a bag of n unlabeled apples we will choose k apples to receive stickers. One of these k apples will receive **two** stickers and the other k-1 will receive **one** sticker each. We will count the possibilities in two ways.

On the one hand, we can choose the k stickered apples in $\binom{n}{k}$ ways. Then there are $k = \binom{k}{1}$ ways to choose the apple that will receive two stickers. This gives a total of

$$\binom{n}{k} \times k$$
 choices.

On the other hand, we could first choose the two-stickered apple. There are $n = \binom{n}{1}$ ways to do this. Then we could choose k-1 apples from the remaining n-1 apples to receive one sticker each. There are $\binom{n-1}{k-1}$ ways to do this, for a total of

$$n \times \binom{n-1}{k-1}$$
 choices.

Since these two formulas count the same things, they must be equal.

1. Boolean Algebra.

(a) Use a truth table to prove that $\neg (P \lor Q) = (\neg P \land \neg Q)$ for all $P, Q \in \{T, F\}$.

P	Q	$P \vee Q$	$\neg (P \lor Q)$	$\neg P$	$\neg Q$	$\neg P \land \neg Q$
\overline{T}	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

(b) Recall that we define $(P \Rightarrow Q) := (\neg P) \lor Q$ for all $P, Q \in \{T, F\}$. Use this definition to prove that $(P \Rightarrow Q) = (\neg Q \Rightarrow \neg P)$. [No truth table is necessary.]

$$(\neg Q \Rightarrow \neg P) = (\neg(\neg Q) \lor \neg P) = (Q \lor \neg P) = (\neg P \lor Q) = (P \Rightarrow Q)$$

(c) Use parts (a) and (b) to prove that $(P \Rightarrow (Q \lor R)) = ((\neg Q \land \neg R) \Rightarrow \neg P)$ for all $P, Q, R \in \{T, F\}$. [No truth table is necessary.]

$$((\neg Q \land \neg R) \Rightarrow \neg P) = (\neg (\neg Q \land \neg R) \lor \neg P)$$
(b)
= $((\neg \neg Q \lor \neg \neg R) \lor \neg P)$ (a)
= $((Q \lor R) \lor \neg P)$
= $(\neg P \lor (Q \lor R))$
= $(P \Rightarrow (Q \lor R))$ (b)

2. Even and Odd. The division theorem tells us that every integer $n \in \mathbb{Z}$ has one of the following two forms, which we call *even* and *odd*:

$$n = \begin{cases} 2k+0 & \text{for some } k \in \mathbb{Z}, \\ 2k+1 & \text{for some } k \in \mathbb{Z}. \end{cases}$$

(a) Prove that for all $n \in \mathbb{Z}$ we have $(n \text{ is even}) \Rightarrow (n^2 \text{ is even})$.

Proof. Assume that $n \in \mathbb{Z}$ is even so that n = 2k for some $k \in \mathbb{Z}$. Then we have

$$n^2 = (2k)^2 = 4k^2 = 2(2k^2),$$

and hence n^2 is also even.

(b) Prove that for all $n \in \mathbb{Z}$ we have $(n^2 \text{ is even}) \Rightarrow (n \text{ is even})$.

Proof. We sill prove the contrapositive statement: $(n \text{ is odd}) \Rightarrow (n^2 \text{ is odd})$. So assume that $n \in \mathbb{Z}$ satisfies n = 2k + 1 for some $k \in \mathbb{Z}$. Then we have

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1,$$

and hence n^2 is also odd.

(c) Prove for all $m, n \in \mathbb{Z}$ that $(mn \text{ is even}) \Rightarrow (m \text{ is even or } n \text{ is even})$. [Hint: See Problem 1.]

Proof. From Problem 1(c) this statement is equivalent to the following:

$$(m \text{ and } n \text{ are both odd}) \Rightarrow (mn \text{ is odd}).$$

So assume that $m, n \in \mathbb{Z}$ are both odd. By definition this means that m = 2k + 1 and $n = 2\ell + 1$ for some integers $k, \ell \in \mathbb{Z}$. But then we have

$$mn = (2k+1)(2\ell+1) = 4k\ell + 2k + 2\ell + 1 = 2(2k\ell + k + \ell) + 1,$$

which implies that mn is odd.

3. Induction. We will prove by induction that the following statement is true for all $n \ge 1$: $P(n) = "2 + 4 + 6 + \cdots + 2n = n(n+1)$."

$$I(n) = 2 + 4 + 0 + \cdots + 2n = n(n + 1).$$

(a) Accurately state (some version of) the Principle of Induction.

If
$$(P(1) = T)$$
 and if $(\forall n \ge 1, P(n) \Rightarrow P(n+1))$ then $(\forall n \ge 1, P(n) = T)$.

(b) Verify the base case(s).

$$P(1) = "2 = 1(1+1)" = T.$$

(c) Prove the induction step.

Proof. Fix some $n \ge 1$ and assume for induction that P(n) is true, i.e., that

$$2+4+6+\cdots+2n = n(n+1).$$

Then P(n+1) is also true because

$$2+4+6+\cdots+2(n+1) = (2+4+6+\cdots+2n)+2(n+1)$$
$$= n(n+1)+2(n+1)$$
$$= (n+1)(n+2).$$

4. Counting.

(a) Let S be a set with 10 elements. In how many ways can we choose a subset of size 3?

$$\binom{10}{3} = \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 120$$

(b) How many words can be formed using all six of the letters b, a, n, a, n, a?

$$\binom{6}{1,3,2} = \frac{6!}{1!3!2!} = \frac{6 \cdot 5 \cdot 4}{2} = 60$$

(c) Suppose that a deck contains 3 red cards and 4 blue cards, and suppose that 3 (unordered) cards are drawn at random. Compute the ratio A/B, where

A = the number of ways to get 1 red and 2 blue cards,

B =the number of possibilities when color doesn't matter.

To compute A we choose 1 red card from 3 and then choose 2 blue cards from 4:

$$A = \underbrace{\binom{3}{1}}_{1} \times \underbrace{\binom{4}{2}}_{2} = \binom{3}{1} \binom{4}{2} = 3 \cdot 6 = 18.$$

To compute B we simply choose 3 cards from 7:

$$B = \binom{7}{3} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} = 35.$$

Thus the ratio is A/B = 18/35 = 51.4%. [Remark: This is the probability of getting 1 red and 2 blue cards when 3 cards are drawn at random.]

5. Induction Without Algebra. Consider the following statement:

$$P(n) =$$
 "The set $\{1, 2, ..., n\}$ has 2^n different subsets."

(a) Prove that P(3) is a true statement by writing down all of the subsets.

There are $2^3 = 8$ subsets of $\{1, 2, 3\}$:

	$\{1, 2, 3\}$	
$\{1, 2\}$	$\{1, 3\}$	$\{2, 3\}$
{1}	{2}	{3}
	Ø	

(b) If $n \geq 2$, describe an explicit bijection between the following two sets:

$$\left\{\text{all subsets of } \{1,2\dots,n-1\}\right\} \leftrightarrow \left\{\text{subsets of } \{1,2,\dots,n\} \text{ that } \mathbf{must} \text{ contain } n\right\}$$

Given a subset $A \subseteq \{1, 2, ..., n-1\}$ we add n to get $B := A \cup \{n\} \subseteq \{1, 2, ..., n\}$. Conversely, given a subset $B \in \{1, 2, ..., n\}$ we subtract n to get $A := B \cap \{n\}' \subseteq \{1, 2, ..., n-1\}$. Note that these two operations are inverses.

(c) By dividing the subsets of $\{1, 2, ..., n\}$ into those that either do or do not contain the symbol n, give an inductive proof that P(n) is true for all $n \ge 1$.

(Bonus points may be awarded for style.)

Proof. I will prove by induction that for all $n \ge 1$ the set $\{1, 2, ..., n\}$ has 2^n subsets. When n = 1 we observe that the statement is true because the set $\{1\}$ has exactly $2 = 2^1$ subsets: $\{1\}$ and \emptyset . Now fix some $n \ge 1$ and assume for induction that $\{1, 2, ..., n - 1\}$ has 2^{n-1} subsets. In this case we will prove that $\{1, 2, ..., n\}$ has 2^n subsets.

So let S be the set of subsets of $\{1, 2, ..., n\}$ and break this into two pieces as follows:

$$S' := \{ A \subseteq \{1, 2, \dots, n\} : n \notin A \},$$

$$S'' := \{ A \subseteq \{1, 2, \dots, n\} : n \in A \}.$$

We observe that S' is the set of all subsets of $\{1, 2, ..., n-1\}$ hence by induction we know that $\#S' = 2^{n-1}$. Furthermore, from part (b) we have a bijection $S' \leftrightarrow S''$ so that $\#S'' = \#S' = 2^{n-1}$. Finally, we conclude that

$$\#S = \#S' + \#S'' = 2^{n-1} + 2^{n-1} = 2 \cdot 2^{n-1} = 2^n$$

as desired. \Box