Math 309

Linear Diophantine Equations

The handwritten notes don't go into full generality, so I decided to type up this supplement.
For any integers $a, b, c \in \mathbb{Z}$ we want to find all integer solutions $x, y \in \mathbb{Z}$ to the following linear equation:

$$
\begin{equation*}
a x+b y=c . \tag{1}
\end{equation*}
$$

If $a=b=0$ then we have two very boring cases:

- If $c \neq 0$ then there is no solution.
- If $c=0$ then all values of $x, y \in \mathbb{Z}$ are solutions.

Furthermore, if exactly one of a, b is zero (say $b=0$) then equation (1) becomes

$$
a x=c,
$$

which has a unique solution or no solution, depending on whether a divides c. Having dispensed with these trivial cases, let us suppose that a, b are both nonzero and let

$$
d:=\operatorname{gcd}(a, b)
$$

be the greatest common divisor, with $a=d a^{\prime}$ and $b=d b^{\prime}$ for some $a^{\prime}, b^{\prime} \in \mathbb{Z}$. If equation (1) has a solution in this case then we must have

$$
\begin{aligned}
c & =a x+b y \\
& =d a^{\prime} x+d b^{\prime} y \\
& =d\left(a^{\prime} x+b^{\prime} y\right),
\end{aligned}
$$

which implies that d divides c. We conclude the following:
if $d \nmid c$ then equation (1) has no solution.
So let us assume from now on that $d \mid c$, with $c=d c^{\prime}$ for some $c^{\prime} \in \mathbb{Z}$. In this case I claim that equation (1) is equivalent to the following reduced equation:

$$
\begin{equation*}
a^{\prime} x+b^{\prime} y=c^{\prime} . \tag{2}
\end{equation*}
$$

Proof: If $x, y \in \mathbb{Z}$ is a solution to (2) then it is also a solution to (1) because

$$
\begin{aligned}
a^{\prime} x+b^{\prime} y & =c^{\prime} \\
d\left(a^{\prime} x+b^{\prime} y\right) & =d c^{\prime} \\
\left(d a^{\prime}\right) x+\left(d b^{\prime}\right) y & =\left(d c^{\prime}\right) \\
a x+b y & =c .
\end{aligned}
$$

Conversely, if $x, y \in \mathbb{Z}$ is a solution to (1) then it is also a solution to (2) because

$$
\begin{aligned}
a x+b y & =c \\
\left(d a^{\prime}\right) x+\left(d b^{\prime}\right) y & =\left(d c^{\prime}\right) \\
\not d\left(a^{\prime} x+b^{\prime} y\right) & =\not d\left(c^{\prime}\right) \\
a^{\prime} x+b^{\prime} y & =c^{\prime} .
\end{aligned}
$$

In the final step we canceled d from both sides, which is allowed because $d \neq 0$.

Thus we may throw away equation (1) forever and focus our attention on the "reduced" equation (2). Furthermore, I claim that equation (2) splits into two separate problems:

Problem 1. Find One Specific Solution. Let $x^{\prime}, y^{\prime} \in \mathbb{Z}$ be one specific solution:

$$
a^{\prime} x^{\prime}+b^{\prime} y^{\prime}=c^{\prime} .
$$

Problem 2. Find the General Homogeneous Solution. Let $x_{0}, y_{0} \in \mathbb{Z}$ be the general solution of the associated homogeneous equation:

$$
\begin{equation*}
a^{\prime} x_{0}+b^{\prime} y_{0}=0 . \tag{3}
\end{equation*}
$$

Then I claim that $(x, y)=\left(x^{\prime}+x_{0}, y^{\prime}+y_{0}\right)$ is the general solution of (2).
Proof: Let $x, y \in \mathbb{Z}$ and $x^{\prime}, y^{\prime} \in \mathbb{Z}$ be any two solutions to (2). Then we have

$$
a^{\prime}\left(x-x^{\prime}\right)+b^{\prime}\left(y-y^{\prime}\right)=\left(a^{\prime} x+b^{\prime} y\right)-\left(a^{\prime} x^{\prime}+b^{\prime} y^{\prime}\right)=c^{\prime}-c^{\prime}=0
$$

and it follows that $\left(x-x^{\prime}, y-y^{\prime}\right)=\left(x_{0}, y_{0}\right)$ is a solution of the homogeneous equation (3), hence (x, y) has the form $\left(x^{\prime}+x_{0}, y^{\prime}+y_{0}\right)$. Conversely, suppose that $x^{\prime}, y^{\prime} \in \mathbb{Z}$ is a particular solution and $x_{0}, y_{0} \in \mathbb{Z}$ is a homogeneous solution. Then $(x, y)=\left(x^{\prime}+x_{0}, y^{\prime}+y_{0}\right)$ is a solution of (2) because

$$
a^{\prime}\left(x^{\prime}+x_{0}\right)+b^{\prime}\left(y^{\prime}+y_{0}\right)=\left(a^{\prime} x^{\prime}+b^{\prime} y^{\prime}\right)+\left(a^{\prime} x_{0}+b^{\prime} y_{0}\right)=c^{\prime}+0=c^{\prime} .
$$

It only remains so solve the Problems 1 and 2. Let's begin with Problem 1.
Solution to Problem 1. By applying the Extended Euclidean Algorithm, we can find specific integers $\alpha, \beta \in \mathbb{Z}$ such that

$$
a \alpha+b \beta=\operatorname{gcd}(a, b)=d
$$

And then since $a=d a^{\prime}$ and $b=d b^{\prime}$ we have

$$
\begin{aligned}
a \alpha+b \beta & =d \\
\left(d a^{\prime}\right) \alpha+\left(d b^{\prime}\right) \beta & =d \\
\not d\left(a^{\prime} \alpha+b^{\prime} \beta\right) & =\not d \\
a^{\prime} \alpha+b^{\prime} \beta & =1 .
\end{aligned}
$$

It follows from this that

$$
\begin{aligned}
a^{\prime} \alpha+b^{\prime} \beta & =1 \\
c^{\prime}\left(a^{\prime} \alpha+b^{\prime} \beta\right) & =c^{\prime}(1) \\
a^{\prime}\left(c^{\prime} \alpha\right)+b^{\prime}\left(c^{\prime} \beta\right) & =c^{\prime},
\end{aligned}
$$

and thus have found our desired specific solution:

$$
\left(x^{\prime}, y^{\prime}\right)=\left(c^{\prime} \alpha, c^{\prime} \beta\right)
$$

Solution to Problem 2. From the solution to Problem 1, we saw that there exist specific integers $\alpha, \beta \in \mathbb{Z}$ such that

$$
a^{\prime} \alpha+b^{\prime} \beta=1 .
$$

It follows from this equation that

$$
\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1
$$

Indeed, suppose that δ is any common divisor of a^{\prime} and b^{\prime}; let's say $a^{\prime}=\delta a^{\prime \prime}$ and $b^{\prime}=\delta b^{\prime \prime}$ for some integers $a^{\prime \prime}, b^{\prime \prime} \in \mathbb{Z}$. Then we must have

$$
1=a^{\prime} \alpha+b^{\prime} \beta=\left(d a^{\prime \prime}\right) \alpha+\left(d b^{\prime \prime}\right) \beta=d\left(a^{\prime \prime} \alpha+b^{\prime \prime} \beta\right)
$$

from which it follows that $\delta \leq 1$. Since every common divisor of a^{\prime}, b^{\prime} satisfies $\delta \leq 1$ is must be that the greatest common divisor satisfies $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right) \leq 1$, and hence $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$.

Now I claim that the general solution $x_{0}, y_{0} \in \mathbb{Z}$ of the homogeneous equation (3) is given by

$$
\left(x_{0}, y_{0}\right)=\left(b^{\prime} k,-a^{\prime} k\right) \text { for some } k \in \mathbb{Z}
$$

Proof: Let $x_{0}, y_{0} \in \mathbb{Z}$ be any solution of equation (3):

$$
a^{\prime} x_{0}+b^{\prime} y_{0}=0
$$

It follows from this that

$$
a^{\prime} x_{0}=-b^{\prime} y_{0}
$$

which implies that $a^{\prime} \mid\left(b^{\prime} y_{0}\right)$ and $b^{\prime} \mid\left(a^{\prime} x_{0}\right)$. Then since $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$, Euclid's Lemma ${ }^{1}$ tells us that $a^{\prime} \mid y_{0}$ and $b^{\prime} \mid x_{0}$. Specifically, let us say that

$$
x_{0}=b^{\prime} k \quad \text { and } \quad y_{0}=a^{\prime} \ell \quad \text { for some } k, \ell \in \mathbb{Z}
$$

Finally, we have

$$
\begin{aligned}
a^{\prime} x_{0} & =-b^{\prime} y_{0} \\
a^{\prime} b^{\prime} k & =-b^{\prime} a^{\prime} \ell \\
\left(a^{\prime} b^{\prime}\right)(k+\ell) & =0
\end{aligned}
$$

Since a^{\prime}, b^{\prime} are both nonzero we have $a^{\prime} b^{\prime} \neq 0$ and hence

$$
\begin{aligned}
(k+\ell) & =0 \\
\ell & =-k
\end{aligned}
$$

It follows that

$$
\left(x_{0}, y_{0}\right)=\left(b^{\prime} k, a^{\prime} \ell\right)=\left(b^{\prime} k,-a^{\prime} k\right) \text { for some } k \in \mathbb{Z}
$$

as desired.
Putting everything together, we obtain the following general solution.
Theorem. Let $a, b, c \in \mathbb{Z}$ with a, b both nonzero. Let $d=\operatorname{gcd}(a, b)$ with $a=d a^{\prime}$ and $b=d b^{\prime}$, and let us also suppose that $c=d c^{\prime}$ for some $c^{\prime} \in \mathbb{Z}$. If $\alpha, \beta \in \mathbb{Z}$ are any specific integers satisfying $a^{\prime} \alpha+b^{\prime} \beta=1$, then the complete solution of the linear Diophantine equation

$$
\begin{equation*}
a x+b y=c \tag{1}
\end{equation*}
$$

is given by

$$
(x, y)=\left(x^{\prime}+x_{0}, y^{\prime}+y_{0}\right)=\left(c^{\prime} \alpha+b^{\prime} k, c^{\prime} \beta-a^{\prime} k\right) \quad \text { for all } k \in \mathbb{Z}
$$

Time for an example.

[^0]Worked Example. Let us consider the equation

$$
385 x+84 y=21
$$

So in this case we have

$$
a=385, \quad b=84 \quad \text { and } \quad c=21 .
$$

In order to compute the gcd of 385 and 84 we use the classical Euclidean Algorithm:

$$
\begin{aligned}
385 & =4 \cdot 84+49 \\
84 & =1 \cdot 49+35 \\
49 & =1 \cdot 35+14 \\
35 & =2 \cdot 14+7 \\
14 & =2 \cdot 7+0
\end{aligned}
$$

We conclude that

$$
d=\operatorname{gcd}(a, b)=\operatorname{gcd}(385,84)=7,
$$

and hence that

$$
a^{\prime}=a / d=55, \quad b^{\prime}=b / d=12 \quad \text { and } \quad c^{\prime}=c / d=3 .
$$

Thus the reduced equation is

$$
55 x+12 y=3
$$

which has exactly the same solution as the original equation. We are guaranteed that $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=$ $\operatorname{gcd}(55,12)=1$, and our final goal is to find some particular integers $\alpha, \beta \in \mathbb{Z}$ such that

$$
55 \alpha+12 \beta=1
$$

To do this we will use the Extended Euclidean Algorithm. That is, we will consider the set of all triples $(x, y, z) \in \mathbb{Z}^{3}$ satisfying $55 x+12 y=z$. Then we will begin with the easy triples $(1,0,55)$ and $(0,1,12)$ and combine them using linear combinations, until we reach a triple of the form $(\alpha, \beta, 1)$:

x	y	z	
1	0	55	(Row 1)
0	1	12	(Row 2)
1	-4	7	(Row 3) $=($ Row 1) $-4 \cdot($ Row 2)
-1	5	5	(Row 4) $=($ Row 2) $-1 \cdot($ Row 3)
2	-9	2	(Row 5) $=($ Row 3) $-1 \cdot($ Row 4)
-5	23	1	(Row 6$)=($ Row 4$)-1 \cdot($ Row 5)

The final row tells us that

$$
\alpha=-5 \quad \text { and } \quad \beta=23
$$

is one possible solution. Putting everything together, we conclude that the general solution to the original equation is

$$
\begin{aligned}
(x, y) & =\left(c^{\prime} \alpha+b^{\prime} k, c^{\prime} \beta-a^{\prime} k\right) \quad \text { for all } k \in \mathbb{Z} \\
& =(3 \cdot(-5)+12 k, 3 \cdot 23-55 k) \quad \text { for all } k \in \mathbb{Z} \\
& =(-15+12 k, 69-55 k) \quad \text { for all } k \in \mathbb{Z}
\end{aligned}
$$

Great, but isn't there a faster way?

The Faster Way. In order to solve the linear Diophantine equation

$$
385 x+84 y=21
$$

we will apply the Extended Euclidean Algorithm right from the start. That is, we will consider the set of all triples $(x, y, z) \in \mathbb{Z}^{3}$ that satisfy the equation. Then we will begin with the easy triples $(1,0,385)$ and $(0,1,84)$ and proceed with the steps of the Euclidean Algorithm until we hit a triple of the form $(x, y, 0)$:

x	y	z	
1	0	385	(Row 1)
0	1	84	(Row 2)
1	-4	49	(Row 3) $=($ Row 1) $-4 \cdot($ Row 2)
-1	5	35	(Row 4) $=($ Row 2$)-1 \cdot($ Row 3)
2	-9	14	(Row 5) $=($ Row 3) $-1 \cdot($ Row 4)
-5	23	7	(Row 6) $=($ Row 4) $-1 \cdot($ Row 5)
12	-55	0	(Row 7) $=($ Row 5) $-2 \cdot($ Row 6)

Row 7 tells us that the associated homogeneous equation has complete solution

$$
384(12 k)+84(-55 k)=0 \quad \text { for all } k \in \mathbb{Z}
$$

and Row 6 tells us one particular solution:

$$
\begin{aligned}
385(-5)+84(23) & =7 \\
385(-5 \cdot 3)+84(23 \cdot 3) & =7 \cdot 3 \\
385(-15)+84(69) & =21
\end{aligned}
$$

Adding these together gives the complete solution of the original equation:

$$
384(-15+12 k)+84(69-55 k)=21 \quad \text { for all } k \in \mathbb{Z}
$$

Picture. The equation $385 x+84 y=21$ defines a line in the real x, y-plane. The whole number solutions which we have calculated,

$$
(x, y)=(-15+12 k, 69-55 k) \quad \text { for all } k \in \mathbb{Z}
$$

are just the points on this line that have integer coordinates. There are infinitely many.

[^0]: ${ }^{1}$ See the Homework.

