
Math 309 Summer B 2018
Linear Diophantine Equations Drew Armstrong

The handwritten notes don’t go into full generality, so I decided to type up this supplement.

For any integers a, b, c ∈ Z we want to find all integer solutions x, y ∈ Z to the following
linear equation:

(1) ax+ by = c.

If a = b = 0 then we have two very boring cases:

• If c 6= 0 then there is no solution.
• If c = 0 then all values of x, y ∈ Z are solutions.

Furthermore, if exactly one of a, b is zero (say b = 0) then equation (1) becomes

ax = c,

which has a unique solution or no solution, depending on whether a divides c. Having dispensed
with these trivial cases, let us suppose that a, b are both nonzero and let

d := gcd(a, b)

be the greatest common divisor, with a = da′ and b = db′ for some a′, b′ ∈ Z. If equation (1)
has a solution in this case then we must have

c = ax+ by

= da′x+ db′y

= d(a′x+ b′y),

which implies that d divides c. We conclude the following:

if d - c then equation (1) has no solution.

So let us assume from now on that d|c, with c = dc′ for some c′ ∈ Z. In this case I claim that
equation (1) is equivalent to the following reduced equation:

(2) a′x+ b′y = c′.

Proof: If x, y ∈ Z is a solution to (2) then it is also a solution to (1) because

a′x+ b′y = c′

d(a′x+ b′y) = dc′

(da′)x+ (db′)y = (dc′)

ax+ by = c.

Conversely, if x, y ∈ Z is a solution to (1) then it is also a solution to (2) because

ax+ by = c

(da′)x+ (db′)y = (dc′)

�d(a′x+ b′y) = �d(c′)

a′x+ b′y = c′.

In the final step we canceled d from both sides, which is allowed because d 6= 0. �



Thus we may throw away equation (1) forever and focus our attention on the “reduced”
equation (2). Furthermore, I claim that equation (2) splits into two separate problems:

Problem 1. Find One Specific Solution. Let x′, y′ ∈ Z be one specific solution:

a′x′ + b′y′ = c′.

Problem 2. Find the General Homogeneous Solution. Let x0, y0 ∈ Z be the general
solution of the associated homogeneous equation:

(3) a′x0 + b′y0 = 0.

Then I claim that (x, y) = (x′ + x0, y
′ + y0) is the general solution of (2).

Proof: Let x, y ∈ Z and x′, y′ ∈ Z be any two solutions to (2). Then we have

a′(x− x′) + b′(y − y′) = (a′x+ b′y)− (a′x′ + b′y′) = c′ − c′ = 0,

and it follows that (x − x′, y − y′) = (x0, y0) is a solution of the homogeneous equation (3),
hence (x, y) has the form (x′ + x0, y

′ + y0). Conversely, suppose that x′, y′ ∈ Z is a particular
solution and x0, y0 ∈ Z is a homogeneous solution. Then (x, y) = (x′ +x0, y

′ +y0) is a solution
of (2) because

a′(x′ + x0) + b′(y′ + y0) = (a′x′ + b′y′) + (a′x0 + b′y0) = c′ + 0 = c′.

�

It only remains so solve the Problems 1 and 2. Let’s begin with Problem 1.

Solution to Problem 1. By applying the Extended Euclidean Algorithm, we can find
specific integers α, β ∈ Z such that

aα+ bβ = gcd(a, b) = d.

And then since a = da′ and b = db′ we have

aα+ bβ = d

(da′)α+ (db′)β = d

�d(a′α+ b′β) = �d

a′α+ b′β = 1.

It follows from this that

a′α+ b′β = 1

c′(a′α+ b′β) = c′(1)

a′(c′α) + b′(c′β) = c′,

and thus have found our desired specific solution:

(x′, y′) = (c′α, c′β).

�

Solution to Problem 2. From the solution to Problem 1, we saw that there exist specific
integers α, β ∈ Z such that

a′α+ b′β = 1.

It follows from this equation that
gcd(a′, b′) = 1.



Indeed, suppose that δ is any common divisor of a′ and b′; let’s say a′ = δa′′ and b′ = δb′′ for
some integers a′′, b′′ ∈ Z. Then we must have

1 = a′α+ b′β = (da′′)α+ (db′′)β = d(a′′α+ b′′β),

from which it follows that δ ≤ 1. Since every common divisor of a′, b′ satisfies δ ≤ 1 is must
be that the greatest common divisor satisfies gcd(a′, b′) ≤ 1, and hence gcd(a′, b′) = 1.

Now I claim that the general solution x0, y0 ∈ Z of the homogeneous equation (3) is given by

(x0, y0) = (b′k,−a′k) for some k ∈ Z.

Proof: Let x0, y0 ∈ Z be any solution of equation (3):

a′x0 + b′y0 = 0.

It follows from this that
a′x0 = −b′y0,

which implies that a′|(b′y0) and b′|(a′x0). Then since gcd(a′, b′) = 1, Euclid’s Lemma1 tells us
that a′|y0 and b′|x0. Specifically, let us say that

x0 = b′k and y0 = a′` for some k, ` ∈ Z.
Finally, we have

a′x0 = −b′y0
a′b′k = −b′a′`

(a′b′)(k + `) = 0.

Since a′, b′ are both nonzero we have a′b′ 6= 0 and hence

(k + `) = 0

` = −k.
It follows that

(x0, y0) = (b′k, a′`) = (b′k,−a′k) for some k ∈ Z,
as desired. �

Putting everything together, we obtain the following general solution.

Theorem. Let a, b, c ∈ Z with a, b both nonzero. Let d = gcd(a, b) with a = da′ and b = db′,
and let us also suppose that c = dc′ for some c′ ∈ Z. If α, β ∈ Z are any specific integers
satisfying a′α+ b′β = 1, then the complete solution of the linear Diophantine equation

(1) ax+ by = c

is given by

(x, y) = (x′ + x0, y
′ + y0) = (c′α+ b′k, c′β − a′k) for all k ∈ Z.

Time for an example.

1See the Homework.



Worked Example. Let us consider the equation

385x+ 84y = 21.

So in this case we have

a = 385, b = 84 and c = 21.

In order to compute the gcd of 385 and 84 we use the classical Euclidean Algorithm:

385 = 4 · 84 + 49
84 = 1 · 49 + 35
49 = 1 · 35 + 14

35 = 2 · 14 + 7
14 = 2 · 7 + 0

We conclude that
d = gcd(a, b) = gcd(385, 84) = 7,

and hence that

a′ = a/d = 55, b′ = b/d = 12 and c′ = c/d = 3.

Thus the reduced equation is
55x+ 12y = 3,

which has exactly the same solution as the original equation. We are guaranteed that gcd(a′, b′) =
gcd(55, 12) = 1, and our final goal is to find some particular integers α, β ∈ Z such that

55α+ 12β = 1.

To do this we will use the Extended Euclidean Algorithm. That is, we will consider the set
of all triples (x, y, z) ∈ Z3 satisfying 55x+ 12y = z. Then we will begin with the easy triples
(1, 0, 55) and (0, 1, 12) and combine them using linear combinations, until we reach a triple of
the form (α, β, 1):

x y z

1 0 55 (Row 1)
0 1 12 (Row 2)
1 −4 7 (Row 3) = (Row 1)− 4 · (Row 2)
−1 5 5 (Row 4) = (Row 2)− 1 · (Row 3)
2 −9 2 (Row 5) = (Row 3)− 1 · (Row 4)
−5 23 1 (Row 6) = (Row 4)− 1 · (Row 5)

The final row tells us that
α = −5 and β = 23

is one possible solution. Putting everything together, we conclude that the general solution
to the original equation is

(x, y) = (c′α+ b′k, c′β − a′k) for all k ∈ Z
= (3 · (−5) + 12k, 3 · 23− 55k) for all k ∈ Z
= (−15 + 12k, 69− 55k) for all k ∈ Z

Great, but isn’t there a faster way?



The Faster Way. In order to solve the linear Diophantine equation

385x+ 84y = 21,

we will apply the Extended Euclidean Algorithm right from the start. That is, we will consider
the set of all triples (x, y, z) ∈ Z3 that satisfy the equation. Then we will begin with the easy
triples (1, 0, 385) and (0, 1, 84) and proceed with the steps of the Euclidean Algorithm until
we hit a triple of the form (x, y, 0):

x y z

1 0 385 (Row 1)
0 1 84 (Row 2)
1 −4 49 (Row 3) = (Row 1)− 4 · (Row 2)
−1 5 35 (Row 4) = (Row 2)− 1 · (Row 3)
2 −9 14 (Row 5) = (Row 3)− 1 · (Row 4)
−5 23 7 (Row 6) = (Row 4)− 1 · (Row 5)
12 −55 0 (Row 7) = (Row 5)− 2 · (Row 6)

Row 7 tells us that the associated homogeneous equation has complete solution

384(12k) + 84(−55k) = 0 for all k ∈ Z,
and Row 6 tells us one particular solution:

385(−5) + 84(23) = 7

385(−5 · 3) + 84(23 · 3) = 7 · 3
385(−15) + 84(69) = 21.

Adding these together gives the complete solution of the original equation:

384(−15 + 12k) + 84(69− 55k) = 21 for all k ∈ Z.

Picture. The equation 385x + 84y = 21 defines a line in the real x, y-plane. The whole
number solutions which we have calculated,

(x, y) = (−15 + 12k, 69− 55k) for all k ∈ Z,
are just the points on this line that have integer coordinates. There are infinitely many.


