Math 309 Summer B 2018
Linear Diophantine Equations Drew Armstrong

The handwritten notes don’t go into full generality, so I decided to type up this supplement.
For any integers a,b,c € Z we want to find all integer solutions z,y € Z to the following
linear equation:

(1) ar + by = c.

If @ = b = 0 then we have two very boring cases:

e If ¢ # 0 then there is no solution.
e If ¢ = 0 then all values of z,y € Z are solutions.

Furthermore, if exactly one of a,b is zero (say b = 0) then equation (1) becomes
ax = c,

which has a unique solution or no solution, depending on whether a divides c. Having dispensed
with these trivial cases, let us suppose that a,b are both nonzero and let

d := ged(a,b)

be the greatest common divisor, with a = da’ and b = db’ for some da’, b’ € Z. If equation (1)
has a solution in this case then we must have

c=ax+by
= da'z + db'y
=d(d'z +b'y),
which implies that d divides c¢. We conclude the following:

if d 1 ¢ then equation (1) has no solution.

So let us assume from now on that d|c, with ¢ = d¢’ for some ¢’ € Z. In this case I claim that
equation (1) is equivalent to the following reduced equation:

(2) ar+by="<.

Proof: If xz,y € Z is a solution to (2) then it is also a solution to (1) because
dr+by=~¢
d(dx+by)=dd
(da")x + (db')y = (dc)
ar + by = c.
Conversely, if x,y € Z is a solution to (1) then it is also a solution to (2) because
ax +by=c
(da’)z + (db')y = (dc)
da'z + by) = d(e)
dz+by=".
In the final step we canceled d from both sides, which is allowed because d # 0. |



Thus we may throw away equation (1) forever and focus our attention on the “reduced”
equation (2). Furthermore, I claim that equation (2) splits into two separate problems:
Problem 1. Find One Specific Solution. Let z’,3’ € Z be one specific solution:

a/x/ + b/y/ — C,.
Problem 2. Find the General Homogeneous Solution. Let xg,y9 € Z be the general
solution of the associated homogeneous equation:

(3) alﬂfo + blyo =0.
Then I claim that (x,y) = (2’ + zo,y’ + yo) is the general solution of (2).

Proof: Let z,y € Z and 2’,y’ € Z be any two solutions to (2). Then we have
d@—a)+V(y—y)=(z+by) - (2" +y)=¢ - =0,

and it follows that (z — 2',y — y') = (x0,y0) is a solution of the homogeneous equation (3),

hence (z,y) has the form (2’ 4+ xo,y" + yo). Conversely, suppose that x’,y" € Z is a particular

solution and g, yo € Z is a homogeneous solution. Then (z,y) = (2’ 4+ x0,y’ +yo) is a solution
of (2) because

a' (@ + o) +V (W +yo) = (a2’ + V') + (dxg + Vo) = +0="C.

It only remains so solve the Problems 1 and 2. Let’s begin with Problem 1.
Solution to Problem 1. By applying the Extended Euclidean Algorithm, we can find
specific integers «, 8 € Z such that
ac + b = ged(a,b) = d.
And then since a = da’ and b = db’ we have
ac+ b8 =d
(da")a + (dV)B = d
d(da+Vp)=d
ada+bp=1.
It follows from this that
da+bp=1
dda+Vp)=7(1)
d(da)+V(dB) =",
and thus have found our desired specific solution:
(@', y) = (da, ).
O
Solution to Problem 2. From the solution to Problem 1, we saw that there exist specific
integers a, 8 € Z such that
da+bp=1.
It follows from this equation that
ged(a',b') = 1.



Indeed, suppose that ¢ is any common divisor of @’ and b'; let’s say a’ = da” and b/ = §b” for
some integers a”,b"” € 7Z. Then we must have

l=da+tp=(dd")a+ (db")3 =d(a"a+b"3),
from which it follows that § < 1. Since every common divisor of a’, b’ satisfies § < 1 is must
be that the greatest common divisor satisfies ged(a’,d’) < 1, and hence ged(a’, ') = 1.
Now I claim that the general solution xg,yp € Z of the homogeneous equation (3) is given by
(20,90) = (b'k, —a'k) for some k € Z.

Proof: Let xg,yo € Z be any solution of equation (3):
a'zy + byg = 0.
It follows from this that
GIJUO = 7b/y07
which implies that a'|(V'yo) and ¥'|(a’zp). Then since ged(a’,b’) = 1, Euclid’s Lemmaﬂ tells us
that a’|yo and b'|zg. Specifically, let us say that

zo=bk and yo=2d'/ for some k.t € 7Z.
Finally, we have
d'zg = —b'yo
ab'k = —btat
(') (k+0)=0.
Since a’, b’ are both nonzero we have a’b’ # 0 and hence
(k+¢)=0
{=—Fk.

It follows that
(w0,y0) = (b'k,ad't) = (b'k, —d'k) for some k € Z,
as desired. O

Putting everything together, we obtain the following general solution.

Theorem. Let a,b,c € Z with a,b both nonzero. Let d = ged(a,b) with a = da’ and b = db,
and let us also suppose that ¢ = dc’ for some ¢ € Z. If o, 3 € Z are any specific integers
satisfying a’a + 0’3 = 1, then the complete solution of the linear Diophantine equation

(1) ar +by=c
is given by

(z,y) = (' + 20,y +y0) = ((a+bk,dB—d'k) foralkeZ.

Time for an example.

1See the Homework.



Worked Example. Let us consider the equation
385z 4 84y = 21.
So in this case we have
a = 385, b=284 and c=21.
In order to compute the ged of 385 and 84 we use the classical Euclidean Algorithm:

385 = 4-84 + 49
84 = 1-49 + 35
49 = 1.35 + 14
35 = 2-14 +
4 = 2.7 + 0

We conclude that
d = ged(a, b) = ged(385,84) =7,
and hence that
a' =a/d =55, V=0b/d=12 and d=c/d=3.

Thus the reduced equation is

95T + 12y = 3,
which has exactly the same solution as the original equation. We are guaranteed that ged(a’,b) =
ged(55,12) = 1, and our final goal is to find some particular integers «, § € Z such that

55+ 126 = 1.

To do this we will use the Extended Euclidean Algorithm. That is, we will consider the set
of all triples (z,y,2) € Z? satisfying 552 + 12y = z. Then we will begin with the easy triples
(1,0,55) and (0, 1,12) and combine them using linear combinations, until we reach a triple of
the form («, 3,1):

1 55 (Row 1)
0| 1 |12 (Row 2)
1 |—-4]7 (Row3)=(Row1l)—4-(Row 2)
—1| 5 |5 (Row4)=(Row2)—1-(Row 3)
2 1-9|2 (Rowb5)=(Row3)—1-(Row 4)
—5]123| 1 (Row6)=(Row4)—1-(Row5)

The final row tells us that
a=-5 and 5=23

is one possible solution. Putting everything together, we conclude that the general solution
to the original equation is

(x,9) = (a+Vk,dB—adk) forall kecZ
— (3-(=5)+12k,3-23 — 55k) forallk € Z
= (—15+12k,69 — 55k) forall k € Z

Great, but isn’t there a faster way?



The Faster Way. In order to solve the linear Diophantine equation
385z + 84y = 21,

we will apply the Extended Euclidean Algorithm right from the start. That is, we will consider
the set of all triples (z,y, z) € Z> that satisfy the equation. Then we will begin with the easy
triples (1,0,385) and (0,1,84) and proceed with the steps of the Euclidean Algorithm until
we hit a triple of the form (z,y,0):

z |y 2
1] 0 |38 (Row1)

0] 1 |84 (Row?2)

1 | —41]49 (Row3)=(Row1l)—4-(Row 2)
1| 5 | 35 (Row4) = (Row 2) — 1 (Row 3)
2| —9 |14 (Row5)=(Row 3) — 1- (Row 4)
5] 23 | 7 (Row 6) = (Row 4) — 1 - (Row 5)
12| -55| 0 (Row 7) = (Row 5) — 2 - (Row 6)

Row 7 tells us that the associated homogeneous equation has complete solution

384(12k) + 84(—55k) =0 for all k € Z,

and Row 6 tells us one particular solution:
385(—5) + 84(23)

385(—5-3)+84(23-3) =
385(—15) + 84(69) = 21.
Adding these together gives the complete solution of the original equation:
384(—15 4+ 12k) 4 84(69 — 55k) = 21 for all k € Z.

Picture. The equation 385z + 84y = 21 defines a line in the real x,y-plane. The whole
number solutions which we have calculated,

(z,y) = (—15+ 12k,69 — 55k)  for all k € Z,

are just the points on this line that have integer coordinates. There are infinitely many.
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