1. Accurately state (some version of) the Principle of Induction.

For each integer $n \geq 1$ let $P(n)$ be a logical statement. Suppose that the following two conditions hold:

- $P(1)$ is a true statement, and
- For all integers $k \geq 1$ we have $P(k) \Rightarrow P(k+1)$.

Then we may conclude that $P(n)$ is a true statement for all $n \geq 1$.
2. Consider the sequence of numbers defined recursively by

$$
\begin{cases}r_{0}=1 & \text { and } \\ r_{n}=2 \cdot r_{n-1} & \text { for all } n \geq 1\end{cases}
$$

Now we will prove that the the following statement holds for all integers $n \geq 0$:

$$
P(n)=" r_{n}=2^{n} . "
$$

(a) Verify the base case(s).

We observe that $P(0)=" r_{0}=2^{0}=1$ " is a true statement.
(b) Prove the induction step.

Consider any integer $k \geq 0$ and let us assume for induction that $P(k)$ is a true statement. That is, let us assume that $r_{k}=2^{k}$. But then we have

$$
\begin{array}{rlr}
r_{k+1} & =2 \cdot r^{k} & \text { definition } \\
& =2 \cdot 2^{k} & \text { assumption } \\
& =2^{k+1}, &
\end{array}
$$

which proves that the statement $P(k+1)=" r_{k+1}=2^{k+1} "$ is also true.
3. Consider the sequence of numbers defined recursively by

$$
\begin{cases}s_{1}=1 & \text { and } \\ s_{2}=3 & \text { and } \\ s_{n}=s_{n-1}+s_{n-2} & \text { for all } n \geq 3\end{cases}
$$

(a) Complete the following table:

n	1	2	3	4	5	6
s_{n}	1	3	4	7	11	18

(b) Now we will prove by induction that the following statement holds for all $n \geq 1$:

$$
P(n)=" s_{n}<2^{n} . "
$$

- Verify the base case(s).

We observe that the first two statements are true:

$$
\begin{aligned}
& P(1)=" s_{1}<2 "=" 1<2, " \\
& P(2)=" s_{2}<4 "=" 3<4 . "
\end{aligned}
$$

- Prove the induction step.

Now consider any $k \geq 3$ and let us assume for induction that the statements $P(k-1)$ and $P(k-2)$ are true. That is, let us assume that $s_{k-1}<2^{k-1}$ and $s_{k-2}<2^{k-2}$. But then we have

$$
\begin{array}{rlr}
s_{k} & =s_{k-1}+s_{k-2} & \text { definition } \\
& <2^{k-1}+2^{k-2} & \text { induction } \\
& <2^{k-1}+2^{k-1} & \text { since } 2^{k-2}<2^{k-1} \\
& =2 \cdot 2^{k-1} & \\
& =2^{k}, &
\end{array}
$$

which proves that the statement $P(k)=" s_{k}<2^{k} "$ is also true.

