1. Accurately state the Division Theorem.

For all integers $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist unique integers $q, r \in \mathbb{Z}$ satisfying:

$$
\left\{\begin{array}{l}
a=q b+r \\
0 \leq r<|b|
\end{array}\right.
$$

2. Let $a, b \in \mathbb{Z}$ and consider the following statement:

$$
" 2|a \Rightarrow 2|(a b) . "
$$

(a) Translate the statement into English.
"If a is even then $a b$ is even."
or
"If 2 divides a then 2 divides $a b$."
or
"If there exists $k \in \mathbb{Z}$ such that $a=2 k$, then there exists $\ell \in \mathbb{Z}$ such that $a b=2 \ell$."
(b) Prove that the statement is true.

Proof: If $2 \mid a$ then by definition we have $a=2 k$ for some $k \in \mathbb{Z}$. But then we also have

$$
a b=(2 k) b=2(k b),
$$

which by definition says that $2 \mid a b$.
3. Apply the Euclidean Algorithm to compute greatest common divisor of 105 and 91.

$$
\begin{aligned}
\mathbf{1 0 5} & =1 \cdot \mathbf{9 1}+\mathbf{1 4}, & \operatorname{gcd}(105,91) & =\operatorname{gcd}(91,14) \\
\mathbf{9 1} & =6 \cdot \mathbf{1 4}+\mathbf{7}, & & \operatorname{gcd}(14,7) \\
\mathbf{1 4} & =2 \cdot \mathbf{7}+\mathbf{0} . & & =\operatorname{gcd}(7,0)=7 .
\end{aligned}
$$

4. Apply the Extended Euclidean Algorithm to find the complete integer solution $x, y \in \mathbb{Z}$ to the following linear equation:

$$
8 x+5 y=1 .
$$

We make a table of triples $(x, y, z) \in \mathbb{Z}^{3}$ satisfying $8 x+5 y=z$:

x	y	z
1	0	8
0	1	5
1	-1	3
-1	2	2
2	-3	1
-5	8	0

The second-last row gives us one particular solution:

$$
8(2)+5(-3)=1
$$

And the last row gives us the complete homogeneous solution:

$$
8(-5 k)+5(8 k)=0 \quad \text { for all } k \in \mathbb{Z}
$$

Putting these together gives the complete solution:

$$
8(2-5 k)+5(-3+8 k)=1 \quad \text { for all } k \in \mathbb{Z}
$$

In other words:

$$
\binom{x}{y}=\binom{2}{-3}+k\binom{-5}{8} \quad \text { for all } k \in \mathbb{Z}
$$

