1. Accurately state the Binomial Theorem.

For all integers $n \geq 0$ and for all real numbers x, y we have

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \cdot x^{k} y^{n-k}
$$

2. Draw Pascal's Triangle down the sixth row and use this to find the expansion of $(x+y)^{6}$. Here is Pascal's Triangle:

							1					
				1		1						
			1		2		1					
			1		3		3		1			
		1		4		6		4		1		
1	1		5		10		10		5		1	
1		6		15		20		15		6		1

Therefore we have

$$
(x+y)^{6}=1 x^{6}+6 x^{5} y+15 x^{4} y^{2}+20 x^{3} y^{3}+15 x^{2} y^{4}+6 x y^{5}+1 y^{6} .
$$

3. Consider the set $S=\{1,2,3,4,5,6\}$.
(a) How many subsets does S have?

The number of subsets is $2^{\# S}=2^{6}=64$. Alternatively, we can use Pascal's Triangle:

$$
\sum_{k=0}^{6}\binom{6}{k}=1+6+15+20+15+6+1=64 .
$$

(b) How many of these subsets contain an even number of elements? [Note: 0 is even.]

You may remember from class that the number of even subsets is $2^{\# S-1}=2^{5}=32$. Alternatively, we can use Pascal's Triangle:

$$
\binom{6}{0}+\binom{6}{2}+\binom{6}{4}+\binom{6}{6}=1+15+15+1=32
$$

4.

(a) How many words can be made from k copies of " a " and $n-k$ copies of " b "?

This is the well-known binomial coefficient:

$$
\frac{n!}{k!(n-k)!} .
$$

(b) How many ways are there to arrange the letters " $t, e, n, n, e, s, s, e, e$ " ?

There are 9 letters in total, in which

$$
\begin{aligned}
& " t \text { " appears } 1 \text { time, } \\
& \text { " } e \text { " appears } 4 \text { times, } \\
& \text { " } n \text { " appears } 2 \text { times, and } \\
& \text { " } s \text { " appears } 2 \text { times. }
\end{aligned}
$$

Therefore the number of arrangements is the following multinomial coefficient:

$$
\frac{9!}{1!4!2!2!}=\frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5}{2 \cdot 2}=3,780
$$

Since there's extra white space, here's a free remark:

$$
(t+e+n+s)^{9}=\cdots+3780 \cdot t^{1} e^{4} n^{2} s^{2}+\cdots
$$

