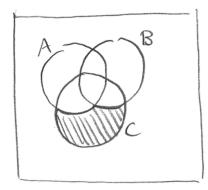
0. (Make-up for Quiz 1) The numbers p_n are defined by the initial condition $p_0 = 1$ and the recurrence $p_n = p_{n-1} - n$ for all $n \ge 1$. Find a closed formula:

$$p_n = 1 - 1 - 2 - 3 - \dots - n$$

= 1 - (1 + 2 + 3 + \dots + n)
= 1 - $\frac{n(n+1)}{2}$

1. Let S be a set and for all elements $x \in S$ let P(x) be a logical statement. Translate the following statements into English:

• " $\forall x \in S, P(x)$ "


"For all elements x in S, the statement P(x) is true." or "The statement P(x) holds for every element x in S." or "Every element x of S satisfies P(x)."

• " $\exists x \in S, \neg P(x)$ "

"There exists an element x in S such that P(x) is false."

2. Let A, B, C be subsets of the universal set U. Use a Venn diagram to illustrate the set

 $(A \cup B)^c \cap C.$

3. Complete the following truth table:

P	Q	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$
Т	T	Т	T	T
T	F	F	T	F
F	T	F	T	T
F	F	F	F	T

4. Consider the Boolean function $\varphi(P,Q)$ defined as follows:

P	Q	$\varphi(P,Q)$
T	T	F
T	F	T
F	T	F
F	F	T

Write down two different algebraic formulas for this function:

(There are infinitely many correct answers.)

$$\varphi(P,Q) = (P \land \neg Q) \lor (\neg P \land \neg Q)$$
$$\varphi(P,Q) = \neg Q$$