1. Let n be a positive integer. Tell me a closed formula for the following sum:

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2}
$$

2. Use your answer from Problem 1 to simplify the following sum:

$$
\sum_{k=1}^{n}(2 k+1)=2\left(\sum_{k=1}^{n} k\right)+\left(\sum_{k=1}^{n} 1\right)=2 \cdot \frac{n(n+1)}{2}+n=n(n+1)+n=n(n+2)
$$

3. Suppose that the numbers p_{n} are defined by the initial condition $p_{0}=1$ and the recurrence $p_{n+1}=p_{n}+n+2$ for all $n \geq 0$. Fill in the following table:

n	0	1	2	3	4
p_{n}	1	3	6	10	15

4. Continuing from Problem 3, use your answer from Problem 1 to find a closed formula: There are many ways to do this. Here's the least clever way:

$$
\begin{aligned}
p_{0} & =1 \\
p_{1} & =1+(0+2) \\
p_{2} & =1+(0+2)+(1+2) \\
& \vdots \\
p_{n} & =1+(0+2)+(1+2)+(3+2)+(4+2)+\cdots+((n-1)+2) \\
& =1+\sum_{k=0}^{n-1}(k+2) \\
& =1+\left(\sum_{k=0}^{n-1} k\right)+\left(\sum_{k=0}^{n-1} 2\right) \\
& =1+\frac{(n-1) n}{2}+2 n \\
& =\frac{2+(n-1) n+4 n}{2} \\
& =\frac{n^{2}+3 n+2}{2} \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

