1. De Morgan's Law. For all integers $n \geq 1$ let $P(n)$ be the following statement:
"For any n statements $Q_{1}, Q_{2}, \ldots Q_{n} \in\{T, F\}$ we have $\neg\left(Q_{1} \wedge \cdots \wedge Q_{n}\right)=\neg Q_{1} \vee \cdots \vee \neg Q_{n}$."
Use induction to prove that $P(n)$ is true for all $n \geq 1$. [Hint: You proved on HW2 that $P(2)$ is a true statement. You do not need to prove this again.]

Proof: The statement $P(1)$ is vacuously true:
"For all $Q \in\{T, F\}$ we have $\neg(Q)=\neg Q$."
And the statement $P(2)$ was proved by you on the second homework:
"For all $Q_{1}, Q_{2} \in\{T, F\}$ we have $\neg\left(Q_{1} \wedge Q_{2}\right)=\neg Q_{1} \vee \neg Q_{2}$."
So let us fix an arbitrary integer $k \geq 2$ and let us assume for induction that $P(k)$ is true:
"For all $Q_{1}, \ldots, Q_{k} \in\{T, F\}$ we have $\neg\left(Q_{1} \wedge \cdots \wedge Q_{k}\right)=\neg Q_{1} \vee \cdots \vee \neg Q_{k}$."
In this hypothetical case we want to show that $P(k+1)$ is also true. For this purpose, let us consider any $k+1$ statements $Q_{1}, Q_{2}, \ldots, Q_{k+1} \in\{T, F\}$. Then we have

$$
\begin{array}{rlrl}
\neg\left(Q_{1} \wedge \cdots \wedge Q_{k+1}\right) & =\neg\left(\left(Q_{1} \wedge \cdots \wedge Q_{k}\right) \wedge Q_{k+1}\right) & \text { associativity of } \wedge \\
& =\neg\left(Q_{1} \wedge \cdots \wedge Q_{k}\right) \vee \neg Q_{k+1} & P(2) \\
& =\left(\neg Q_{1} \vee \cdots \vee \neg Q_{k}\right) \vee \neg Q_{k+1} & P(k) \\
& =\neg Q_{1} \vee \cdots \vee \neg Q_{k+1}, & \text { associativity of } \vee
\end{array}
$$

and hence $P(k+1)$ is true. By the principle of induction we conclude that $P(n)$ is true for all $n \geq 1$.
2. Euclid's Lemma. Let $p \in \mathbb{Z}$ be prime.
(a) For all integers $a, b \in \mathbb{Z}$ prove that

$$
(p \mid a b) \Rightarrow(p|a \vee p| b)
$$

[Hint: It is equivalent to prove $(p \mid a b \wedge p \nmid a) \Rightarrow p \mid b$. Use HW3.]
(b) For all integers $n \geq 1$ we define the statement $P(n)$ as follows:
"For any n integers $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ we have $\left(p \mid a_{1} a_{2} \cdots a_{n}\right) \Rightarrow\left(p \mid a_{i}\right.$ for some $\left.i\right)$."
Use induction to prove that $P(n)$ is true for all $n \geq 1$. [Hint: Part (a) is $P(2)$.]
(a) Proof: Let $p \in \mathbb{Z}$ be prime and suppose that $p \mid a b$ for some $a, b \in \mathbb{Z}$. This means that $p k=a b$ for some $k \in \mathbb{Z}$. In this case we want to prove that either $p \mid a$ or $p \mid b$ (or both). So let us suppose for contradiction that $p \nmid a$ and $p \nmid b 乌^{1}$ Then since the divisors of p are just ± 1 and $\pm p$, and since p is not a divisor of a, we must have $\operatorname{gcd}(p, a)=1$. It follows from the Extended Euclidean Algorithm that there exist some integers $x, y \in \mathbb{Z}$ such that

$$
p x+a y=1
$$

[^0]Now multiply both sides by b to obtain

$$
\begin{aligned}
b(p x+a y) & =b \\
b p x+(a b) y & =b \\
b p x+(p k) y & =b \\
p(b x+k y) & =b
\end{aligned}
$$

which implies that $p \mid b$. This is the desired contradiction.
[Remark: It would have been quicker to just quote Problem 4 from Homework 4.]
(b) Proof: The statement $P(1)$ is vacuously true:
"For any $a \in \mathbb{Z}$ we have $p|a \Rightarrow p| a . "$
And the statement $P(2)$ was proved in part (a):
"For any $a_{1}, a_{2} \in \mathbb{Z}$ we have $\left(p \mid a_{1} a_{2}\right) \Rightarrow\left(p\left|a_{1} \vee p\right| a_{2}\right) . "$
So let us fix an arbitrary integer $k \geq 2$ and let us assume for induction that $P(k)$ is true:
"For any $a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{Z}$ we have $\left(p \mid a_{1} a_{2} \cdots a_{k}\right) \Rightarrow\left(p \mid a_{i}\right.$ for some $\left.i\right)$."
In this hypothetical case we want to show that $P(k+1)$ is also true. For this purpose, let us consider any $k+1$ integers $a_{1}, a_{2}, \ldots, a_{k+1} \in \mathbb{Z}$. Then we have

$$
\begin{array}{rlrl}
p \mid\left(a_{1} a_{2} \cdots a_{k+1}\right) & =p \mid\left(a_{1} a_{2} \cdots a_{k}\right) a_{k+1} & \text { associativity of } \times \\
& \Rightarrow p\left|\left(a_{1} a_{2} \cdots a_{k}\right) \vee p\right| a_{k+1} & P(2) \\
& \Rightarrow\left(p \mid a_{i} \text { for some } 1 \leq i \leq k\right) \vee p \mid a_{k+1} & P(k) \\
& =\left(p\left|a_{1} \vee p\right| a_{2} \vee \cdots \vee p \mid a_{k}\right) \vee p \mid a_{k+1} & & \\
& =\left(p\left|a_{1} \vee p\right| a_{2} \vee \cdots \vee p \mid a_{k+1}\right) & & \\
& =\left(p \mid a_{i} \text { for some } 1 \leq i \leq k+1\right), &
\end{array}
$$

and hence $P(k+1)$ is true. By the principle of induction we conclude that $P(n)$ is true for all $n \geq 1$.
[Remark: Note that this proof is "exactly the same" as Problem 1. After a while, all proofs by induction start to look exactly the same.]
3. Multiplicative Cancellation. For all integers $n \geq 1$ let $P(n)$ be the following statement:

$$
" \forall m \geq 1, m n \geq 1 \text { " }
$$

(a) Show that $P(1)$ is a true statement.
(b) Consider any integer $k \geq 1$ and assume for induction that $P(k)$ is a true statement. In this case, prove that $P(k+1)$ is also a true statement.
(c) Use the result of (a) and (b) to prove the following:

$$
\forall a, b \in \mathbb{Z},(a b=0) \Rightarrow(a=0 \vee b=0)
$$

[Hint: It is equivalent to prove $(a \neq 0 \wedge b \neq 0) \Rightarrow(a b \neq 0)$. If $a \neq 0$ and $b \neq 0$ then we must have $m=|a| \geq 1$ and $n=|b| \geq 1$.]
(d) Use the result of part (c) to prove the following:

$$
\forall a, b, c \in \mathbb{Z},(a b=a c \wedge a \neq 0) \Rightarrow(b=c)
$$

(a) The statement $P(1)$ is vacuously true:
"for all integers $m \geq 1$, we have $m \geq 1$."
(b) Consider any integer $k \geq 1$ and assume for induction that $P(k)$ is true, that is:
"for all integers $m \geq 1$, we have $m k \geq 1$."
In this hypothetical case we want to show that $P(k+1)$ is also true, that is:
"for all integers $m \geq 1$, we have $m(k+1) \geq 1$."
So let us consider any integer $m \geq 1$. Then we have

$$
\begin{array}{rlr}
m(k+1) & =m k+m & \text { distribution } \\
& \geq 1+m & P(k) \\
& \geq 1, & \text { since } m \geq 1
\end{array}
$$

and hence $P(k+1)$ is true. By induction, we conclude that $P(n)$ is true for all $n \geq 1$. In other words:

$$
\text { "For all integers } m \geq 1 \text { and } n \geq 1 \text {, we have } m n \geq 1 \text {." }
$$

(c) Proof: It is helpful to make the following observation:
if n is a whole number then we have $n \neq 0$ if and only if $|n| \geq 1$.
Now if a, b are any whole numbers, we have

$$
\begin{array}{rlr}
a \neq 0 \wedge b \neq 0 & \Rightarrow|a| \geq 1 \wedge|b| \geq 1 & \text { observation } \\
& \Rightarrow|a| \cdot|b| \geq 1 & \text { parts }(\text { a) and }(\mathrm{b}) \\
& \Rightarrow|a b| \geq 1 & \text { since }|a| \cdot|b|=|a b| \\
& \Rightarrow a b \neq 0, & \text { observation }
\end{array}
$$

as desired.
Proof: Consider integers $a, b, c \in \mathbb{Z}$ with $a b=a c$ and $a \neq 0$. Then we have

$$
\begin{aligned}
a b & =a c \\
a b-a c & =0 \\
a(b-c) & =0,
\end{aligned}
$$

and since $a \neq 0$, the result of part (c) implies that $(b-c)=0$; in other words, $b=c$.
[Remark: That was much ado about very little. It might be tempting to just take multiplicative cancellation as part of the definition of integers, but no one ever does that. This exercise was to show you that multiplicative cancellation is actually a subtle consequence of induction. Plus, it was just good mind-stretching exercise.]
4. A Graph Theory Problem. A simple graph consists of a set V of vertices, together with a set E of unordered pairs of vertices, called edges. For example, the following graph has $V=\{1,2,3,4,5\}$ and $E=\{\{1,2\},\{2,3\},\{1,3\},\{4,5\}\}$:

We say that a graph is connected if for all pairs of vertices $u, v \in V$ there exists some sequence of edges $\left\{u_{1}, u_{2}\right\},\left\{u_{2}, u_{3}\right\}, \ldots,\left\{u_{\ell}, u_{\ell+1}\right\}$ starting with $u_{1}=u$ and ending with $u_{\ell+1}=v$. (The graph in the example is not connected.)

Use induction to prove that every connected graph with n vertices has at least $n-1$ edges.
Hint: For any graph G, let $v(G)$ be its number of vertices and let $e(G)$ be its number of edges. We want to show that every connected graph satisfies $e(G) \geq$ $v(G)-1$. If G is connected, then let us start removing edges as random. At some point (after removing d edges, say) the graph will become disconnected into two connected graphs called G_{1} and G_{2}. Observe that $e(G)=d+e\left(G_{1}\right)+e\left(G_{2}\right)$. How many edges could these smaller graphs have?

Proof by strong induction on the number of vertices: For any connected graph G we want to show that

$$
\text { "e(G) } \geq v(G)-1 . "
$$

This statement is clearly true when $v(G)=1$ or $v(G)=2$. (Think about it.) So let us assume for strong induction that the statement is true for all connected graphs satisfying $v(G)<n$. In this case we want to show that the statement is still true for $v(G)=n$.

So let G be an arbitrary connected graph on n vertices. Start removing edges at random (but keep all the vertices) until the graph becomes disconnected into two pieces G_{1} and G_{2}. Suppose that this happens for the first time after deleting d edges. Then we must have

$$
n=v(G)=v\left(G_{1}\right)+v\left(G_{2}\right) \quad \text { and } \quad e(G)-d=e\left(G_{1}\right)+e\left(G_{2}\right) .
$$

But each of the connected graphs G_{1}, G_{2} has fewer vertices than G, hence our induction hypothesis implies that

$$
e\left(G_{1}\right) \geq v\left(G_{1}\right)-1 \quad \text { and } \quad e\left(G_{2}\right) \geq v\left(G_{2}\right)-1
$$

Now putting everything together implies that

$$
\begin{array}{rlrl}
e(G) & =e\left(G_{1}\right)+e\left(G_{2}\right)+d & \\
& \geq\left(v\left(G_{1}\right)-1\right)+\left(v\left(G_{2}\right)-1\right)+d & & \\
& =\left(v\left(G_{1}\right)+v\left(G_{2}\right)\right)-2+d & & \\
& =v(G)-2+d & & \\
& \geq v(G)-1, & & \text { since } d \geq 1
\end{array}
$$

as desired.
[Remark: I included this problem because a computer science professor told me he wants you to see graph theory in this course. Maybe it was too little, too late. Anyway, I think it was a good final challenge.]

[^0]: ${ }^{1}$ By de Morgan's law we know that $\neg(p|a \vee p| b)=(p \nmid a \wedge p \nmid b)$.

