
Math 309 Summer B 2018
Homework 5 Drew Armstrong

1. De Morgan’s Law. For all integers n ≥ 1 let P (n) be the following statement:

“For any n statements Q1, Q2, . . . Qn ∈ {T, F} we have ¬(Q1 ∧ · · · ∧Qn) = ¬Q1 ∨ · · · ∨ ¬Qn.”

Use induction to prove that P (n) is true for all n ≥ 1. [Hint: You proved on HW2 that P (2)
is a true statement. You do not need to prove this again.]

Proof: The statement P (1) is vacuously true:

“For all Q ∈ {T, F} we have ¬(Q) = ¬Q.”

And the statement P (2) was proved by you on the second homework:

“For all Q1, Q2 ∈ {T, F} we have ¬(Q1 ∧Q2) = ¬Q1 ∨ ¬Q2.”

So let us fix an arbitrary integer k ≥ 2 and let us assume for induction that P (k) is true:

“For all Q1, . . . , Qk ∈ {T, F} we have ¬(Q1 ∧ · · · ∧Qk) = ¬Q1 ∨ · · · ∨ ¬Qk.”

In this hypothetical case we want to show that P (k + 1) is also true. For this purpose, let us
consider any k + 1 statements Q1, Q2, . . . , Qk+1 ∈ {T, F}. Then we have

¬(Q1 ∧ · · · ∧Qk+1) = ¬ ((Q1 ∧ · · · ∧Qk) ∧Qk+1) associativity of ∧
= ¬(Q1 ∧ · · · ∧Qk) ∨ ¬Qk+1 P (2)

= (¬Q1 ∨ · · · ∨ ¬Qk) ∨ ¬Qk+1 P (k)

= ¬Q1 ∨ · · · ∨ ¬Qk+1, associativity of ∨

and hence P (k + 1) is true. By the principle of induction we conclude that P (n) is true for
all n ≥ 1. �

2. Euclid’s Lemma. Let p ∈ Z be prime.

(a) For all integers a, b ∈ Z prove that

(p|ab)⇒ (p|a ∨ p|b).

[Hint: It is equivalent to prove (p|ab ∧ p - a)⇒ p|b. Use HW3.]
(b) For all integers n ≥ 1 we define the statement P (n) as follows:

“For any n integers a1, a2, . . . , an ∈ Z we have (p|a1a2 · · · an)⇒ (p|ai for some i).”

Use induction to prove that P (n) is true for all n ≥ 1. [Hint: Part (a) is P (2).]

(a) Proof: Let p ∈ Z be prime and suppose that p|ab for some a, b ∈ Z. This means that
pk = ab for some k ∈ Z. In this case we want to prove that either p|a or p|b (or both). So
let us suppose for contradiction that p - a and p - b.1 Then since the divisors of p are just ±1
and ±p, and since p is not a divisor of a, we must have gcd(p, a) = 1. It follows from the
Extended Euclidean Algorithm that there exist some integers x, y ∈ Z such that

px + ay = 1.

1By de Morgan’s law we know that ¬(p|a ∨ p|b) = (p - a ∧ p - b).



Now multiply both sides by b to obtain

b(px + ay) = b

bpx + (ab)y = b

bpx + (pk)y = b

p(bx + ky) = b,

which implies that p|b. This is the desired contradiction. �

[Remark: It would have been quicker to just quote Problem 4 from Homework 4.]

(b) Proof: The statement P (1) is vacuously true:

“For any a ∈ Z we have p|a⇒ p|a.”

And the statement P (2) was proved in part (a):

“For any a1, a2 ∈ Z we have (p|a1a2)⇒ (p|a1 ∨ p|a2).”
So let us fix an arbitrary integer k ≥ 2 and let us assume for induction that P (k) is true:

“For any a1, a2, . . . , ak ∈ Z we have (p|a1a2 · · · ak)⇒ (p|ai for some i).”

In this hypothetical case we want to show that P (k + 1) is also true. For this purpose, let us
consider any k + 1 integers a1, a2, . . . , ak+1 ∈ Z. Then we have

p|(a1a2 · · · ak+1) = p|(a1a2 · · · ak)ak+1 associativity of ×
⇒ p|(a1a2 · · · ak) ∨ p|ak+1 P (2)

⇒ (p|ai for some 1 ≤ i ≤ k) ∨ p|ak+1 P (k)

= (p|a1 ∨ p|a2 ∨ · · · ∨ p|ak) ∨ p|ak+1

= (p|a1 ∨ p|a2 ∨ · · · ∨ p|ak+1) associativity of ∨
= (p|ai for some 1 ≤ i ≤ k + 1),

and hence P (k + 1) is true. By the principle of induction we conclude that P (n) is true for
all n ≥ 1. �

[Remark: Note that this proof is “exactly the same” as Problem 1. After a while, all proofs
by induction start to look exactly the same.]

3. Multiplicative Cancellation. For all integers n ≥ 1 let P (n) be the following statement:

“∀m ≥ 1,mn ≥ 1.”

(a) Show that P (1) is a true statement.
(b) Consider any integer k ≥ 1 and assume for induction that P (k) is a true statement. In

this case, prove that P (k + 1) is also a true statement.
(c) Use the result of (a) and (b) to prove the following:

∀a, b ∈ Z, (ab = 0)⇒ (a = 0 ∨ b = 0).

[Hint: It is equivalent to prove (a 6= 0∧ b 6= 0)⇒ (ab 6= 0). If a 6= 0 and b 6= 0 then we
must have m = |a| ≥ 1 and n = |b| ≥ 1.]

(d) Use the result of part (c) to prove the following:

∀a, b, c ∈ Z, (ab = ac ∧ a 6= 0)⇒ (b = c).

(a) The statement P (1) is vacuously true:

“for all integers m ≥ 1, we have m ≥ 1.”



(b) Consider any integer k ≥ 1 and assume for induction that P (k) is true, that is:

“for all integers m ≥ 1, we have mk ≥ 1.”

In this hypothetical case we want to show that P (k + 1) is also true, that is:

“for all integers m ≥ 1, we have m(k + 1) ≥ 1.”

So let us consider any integer m ≥ 1. Then we have

m(k + 1) = mk + m distribution

≥ 1 + m P (k)

≥ 1, since m ≥ 1

and hence P (k + 1) is true. By induction, we conclude that P (n) is true for all n ≥ 1. In
other words:

“For all integers m ≥ 1 and n ≥ 1, we have mn ≥ 1.”

(c) Proof: It is helpful to make the following observation:

if n is a whole number then we have n 6= 0 if and only if |n| ≥ 1.

Now if a, b are any whole numbers, we have

a 6= 0 ∧ b 6= 0⇒ |a| ≥ 1 ∧ |b| ≥ 1 observation

⇒ |a| · |b| ≥ 1 parts (a) and (b)

⇒ |ab| ≥ 1 since |a| · |b| = |ab|
⇒ ab 6= 0, observation

as desired. �

Proof: Consider integers a, b, c ∈ Z with ab = ac and a 6= 0. Then we have

ab = ac

ab− ac = 0

a(b− c) = 0,

and since a 6= 0, the result of part (c) implies that (b− c) = 0; in other words, b = c. �

[Remark: That was much ado about very little. It might be tempting to just take multiplicative
cancellation as part of the definition of integers, but no one ever does that. This exercise
was to show you that multiplicative cancellation is actually a subtle consequence of induction.
Plus, it was just good mind-stretching exercise.]

4. A Graph Theory Problem. A simple graph consists of a set V of vertices, together
with a set E of unordered pairs of vertices, called edges. For example, the following graph has
V = {1, 2, 3, 4, 5} and E = {{1, 2}, {2, 3}, {1, 3}, {4, 5}}:



We say that a graph is connected if for all pairs of vertices u, v ∈ V there exists some sequence
of edges {u1, u2}, {u2, u3}, . . . , {u`, u`+1} starting with u1 = u and ending with u`+1 = v. (The
graph in the example is not connected.)

Use induction to prove that every connected graph with n vertices has at least n− 1 edges.

Hint: For any graph G, let v(G) be its number of vertices and let e(G) be its
number of edges. We want to show that every connected graph satisfies e(G) ≥
v(G)−1. If G is connected, then let us start removing edges as random. At some
point (after removing d edges, say) the graph will become disconnected into two
connected graphs called G1 and G2. Observe that e(G) = d + e(G1) + e(G2).
How many edges could these smaller graphs have?

Proof by strong induction on the number of vertices: For any connected graph G we want
to show that

“e(G) ≥ v(G)− 1.”

This statement is clearly true when v(G) = 1 or v(G) = 2. (Think about it.) So let us
assume for strong induction that the statement is true for all connected graphs satisfying
v(G) < n. In this case we want to show that the statement is still true for v(G) = n.

So let G be an arbitrary connected graph on n vertices. Start removing edges at random
(but keep all the vertices) until the graph becomes disconnected into two pieces G1 and G2.
Suppose that this happens for the first time after deleting d edges. Then we must have

n = v(G) = v(G1) + v(G2) and e(G)− d = e(G1) + e(G2).

But each of the connected graphs G1, G2 has fewer vertices than G, hence our induction
hypothesis implies that

e(G1) ≥ v(G1)− 1 and e(G2) ≥ v(G2)− 1.

Now putting everything together implies that

e(G) = e(G1) + e(G2) + d

≥ (v(G1)− 1) + (v(G2)− 1) + d induction

= (v(G1) + v(G2))− 2 + d

= v(G)− 2 + d

≥ v(G)− 1, since d ≥ 1

as desired. �

[Remark: I included this problem because a computer science professor told me he wants you
to see graph theory in this course. Maybe it was too little, too late. Anyway, I think it was a
good final challenge.]


