1. De Morgan's Law. For all integers $n \geq 1$ let $P(n)$ be the following statement:
"For any n statements $Q_{1}, Q_{2}, \ldots Q_{n} \in\{T, F\}$ we have $\neg\left(Q_{1} \wedge \cdots \wedge Q_{n}\right)=\neg Q_{1} \vee \cdots \vee \neg Q_{n}$."
Use induction to prove that $P(n)$ is true for all $n \geq 1$. [Hint: You proved on HW2 that $P(2)$ is a true statement. You do not need to prove this again.]
2. Euclid's Lemma. Let $p \in \mathbb{Z}$ be prime.
(a) For all integers $a, b \in \mathbb{Z}$ prove that

$$
(p \mid a b) \Rightarrow(p|a \vee p| b) .
$$

[Hint: It is equivalent to prove $(p \mid a b \wedge p \nmid a) \Rightarrow p \mid b$. Use HW3.]
(b) For all integers $n \geq 1$ we define the statement $P(n)$ as follows:
"For any n integers $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ we have $\left(p \mid a_{1} a_{2} \cdots a_{n}\right) \Rightarrow\left(p \mid a_{i}\right.$ for some $\left.i\right)$."
Use induction to prove that $P(n)$ is true for all $n \geq 1$. [Hint: Part (a) is $P(2)$.]
3. Multiplicative Cancellation. For all integers $n \geq 1$ let $P(n)$ be the following statement:

$$
" \forall m \geq 1, m n \geq 1 . "
$$

(a) Show that $P(1)$ is a true statement.
(b) Consider any integer $k \geq 1$ and assume for induction that $P(k)$ is a true statement. In this case, prove that $P(k+1)$ is also a true statement.
(c) Use the result of (a) and (b) to prove the following:

$$
\forall a, b \in \mathbb{Z},(a b=0) \Rightarrow(a=0 \vee b=0)
$$

[Hint: It is equivalent to prove $(a \neq 0 \wedge b \neq 0) \Rightarrow(a b \neq 0)$. If $a \neq 0$ and $b \neq 0$ then we must have $m=|a| \geq 1$ and $n=|b| \geq 1$.]
(d) Use the result of part (c) to prove the following:

$$
\forall a, b, c \in \mathbb{Z},(a b=a c \wedge a \neq 0) \Rightarrow(b=c)
$$

4. A Graph Theory Problem. A simple graph consists of a set V of vertices, together with a set E of unordered pairs of vertices, called edges. For example, the following graph has $V=\{1,2,3,4,5\}$ and $E=\{\{1,2\},\{2,3\},\{1,3\},\{4,5\}\}$:

We say that a graph is connected if for all pairs of vertices $u, v \in V$ there exists some sequence of edges $\left\{u_{1}, u_{2}\right\},\left\{u_{2}, u_{3}\right\}, \ldots,\left\{u_{\ell}, u_{\ell+1}\right\}$ starting with $u_{1}=u$ and ending with $u_{\ell+1}=v$. (The graph in the example is not connected.)
Use induction to prove that every connected graph with n vertices has at least $n-1$ edges.

