
Math 309 Summer B 2018
Homework 4 Drew Armstrong

1. Squares Mod 4. Every integer n ∈ Z has a unique “remainder mod 4.” Let us use the
notation (n mod 4) ∈ {0, 1, 2, 3} to denote this remainder.

(a) For all x ∈ Z, show that (x2 mod 4) ∈ {0, 1}. [Hint: There are four kinds of integers.
Square them all and see what you get.]

(b) Let x, y, z ∈ Z be integers satisfying the equation

x2 + y2 = z2.

Prove that at least one of x, y must be even. [Hint: Assume for contradiction that x
and y are both odd, which implies that x2 and y2 are both odd. Now use part (a) to
get a contradiction.]

(a) Let x ∈ Z be any integer. By the Division Theorem, we know that the remainder (x mod 4)
is in the set {0, 1, 2, 3}. In other words, we know that x has one of the following forms:

• If (x mod 4) = 0 then x = 4k + 0 for some k ∈ Z.
• If (x mod 4) = 1 then x = 4k + 1 for some k ∈ Z.
• If (x mod 4) = 2 then x = 4k + 2 for some k ∈ Z.
• If (x mod 4) = 3 then x = 4k + 3 for some k ∈ Z.

Let us square all four kinds of numbers and see what happens:

• If (x mod 4) = 0 then

x2 = (4k + 0)2 = 16k2 = 4(4k2) + 0,

and hence (x2 mod 4) = 0.
• If (x mod 4) = 1 then

x2 = (4k + 1)2 = 16k2 + 8k + 1 = 4(4k2 + 2k) + 1,

and hence (x2 mod 4) = 1.
• If (x mod 4) = 2 then

x2 = (4k + 2)2 = 16k2 + 16k + 4 = 4(4k2 + 4k + 1) + 0,

and hence (x2 mod 4) = 0.
• If (x mod 4) = 3 then

x2 = (4k + 3)2 = 16k2 + 24k + 9 = 4(4k2 + 12k + 2) + 1,

and hence (x2 mod 4) = 1.

In any case, we find that (x2 mod 4) ∈ {0, 1}. More precisely, we can say that

(x is even) ⇔ (x2 mod 4) = 0,

(x is odd) ⇔ (x2 mod 4) = 1.

(b) Proof: Suppose that integers x, y, z ∈ Z satisfy the equation

x2 + y2 = z2,

and let us assume for contradiction that both x and y are odd. From part (a) this implies
that (x2 mod 4) = 1 and (y2 mod 4) = 1, hence there exist integers k, ` ∈ Z such that

x2 = 4k + 1 and y2 = 4` + 1.



But then the equation

z2 = x2 + y2 = (4k + 1) + (4` + 1) = 4(k + `) + 2

implies that (z2 mod 4) = 2, which is a contradiction to part (a). �

2. Euclidean Algorithm.

(a) Apply the Euclidean Algorithm to compute the greatest common divisor of 62 and 24.
(b) Apply the Extended Euclidean Algorithm to find all integer solutions x, y ∈ Z to the

linear equation
62x + 24y = 4.

Hint: You need to find the complete solution of the “homogeneous” equation

62x0 + 24y0 = 0,

and one particular solution of the “non-homogeneous” equation

62x′ + 24y′ = 4.

Then the complete solution is x = x0 + x′ and y = y0 + y′.

I will do parts (a) and (b) at the same time. Let us consider the set of triples (x, y, z) ∈ Z3

that satisfy the equation 62x+24y = z. We begin with the basic triples (1, 0, 62) and (0, 1, 24)
and then apply the Euclidean Algorithm:

x y z
1 0 62 (Row 1)
0 1 24 (Row 2)
1 −2 14 (Row 3) = (Row 1)− 2 · (Row 2)
−1 3 10 (Row 4) = (Row 2)− 1 · (Row 3)
2 −4 4 (Row 5) = (Row 3)− 1 · (Row 4)

−5 13 2 (Row 6) = (Row 4)− 2 · (Row 5)
12 −31 0 (Row 7) = (Row 5)− 2 · (Row 6)

The smallest non-zero remainder is the greatest common divisor:

gcd(62, 24) = 2.

Since the gcd divides 4, we can multiply Row 6 by 2 to obtain a particular solution (x′, y′) =
(−10, 26):

62(−5) + 42(13) = 2

62(−5 · 2) + 42(13 · 2) = 2 · 2
62(−10) + 42(26) = 4.

And multiplying Row 7 by an arbitrary integer k ∈ Z gives the homogeneous solution (x0, y0) =
(12k,−13k):

62(12) + 42(−31) = 0

62(12 · k) + 42(−31 · k) = 0 · k
62(12k) + 42(−31k) = 0.



Adding these gives the complete solution:

62(−10) + 42(26) = 4
+ 62(12k) + 42(−31k) = 0

62(−10 + 12k) + 42(26− 31k) = 4.

In other words, the complete solution is

(x, y) = (x′ + x0, y
′ + y0) = (−10 + 12k, 26− 13k) for any k ∈ Z.

3. Divisibility. For all integers a, b ∈ Z we define the divisibility relation as follows:

“a divides b” = “a|b” = “∃k ∈ Z, ak = b.”

Let a, b, c ∈ Z and prove the following properties of divisibility.

(a) If a|b and b|c then a|c.
(b) If a|b and a|c then a|(bx + cy) for all x, y ∈ Z.
(c) If a|b and b|a then a = ±b.

(a) If a|b and b|c then there exist integers k, ` ∈ Z with

b = ak and c = b`.

But then we have
c = b` = (ak)` = a(k`),

which implies that a|c.

(b) If a|b and a|c then there exist integers k, ` ∈ Z with

b = ak and c = a`.

Then for any integers x, y ∈ Z we have

bx + cy = (ak)x + (a`)y = a(kx + `y),

which implies that a|(bx + cy).

(c) First let me repeat an observation from class:

If a|b and b 6= 0 then |a| ≤ |b|.
To see this, suppose that a|b and b 6= 0. Since a|b we have b = ak for some k ∈ Z and then
since b 6= 0 we also have k 6= 0. But then since k is a whole number and since |a| is positive
we have

1 ≤ |k|
|a| ≤ |a| · |k|
|a| ≤ |a · k|
|a| ≤ |b|.

Now we solve part (c). Let a|b and b|a so that a = bk and b = a` for some integers k, ` ∈ Z.
If a = 0 then b = a` = 0` = 0 and if b = 0 then a = bk = 0k = 0. In either case the equation
a = ±b is true. Otherwise, let us assume that a 6= 0 and b 6= 0. Then

a|b and b 6= 0 implies |a| ≤ |b|
and

b|a and a 6= 0 implies |b| ≤ |a|.



We conclude that
|a| = |b|

as desired.

4. Euclid’s Lemma. Let a, b, c ∈ Z and prove the following:

if a|bc and gcd(a, b) = 1 then a|c.
Hint: If gcd(a, b) = 1 then one may use the Extended Euclidean Algorithm to find some
integers x, y ∈ Z satisfying

ax + by = 1.

Multiply both sides of this equation by c and see what happens.

Proof: Consider integers a, b, c ∈ Z with a|(bc) and gcd(a, b) = 1. Since a|(bc) there exists an
integer k ∈ Z such that

bc = ak,

and since gcd(a, b) = 1 there exist integers x, y ∈ Z (from the Euclidean Algorithm) such that

ax + by = 1.

Then multiplying both sides by c gives

1 = ax + by

c = c(ax + by)

= cax + (bc)y

= cax + (ak)y

= a(cx + ky),

and hence a|c.

Remark. You might see Euclid’s Lemma stated in a slightly different form. Consider integers
a, b, p ∈ Z where p is prime. Then the following is true:

If p|(ab) then p|a or p|b.

After a bit of work, this result leads to the theorem that every integer has a “unique prime
factorization.”


