1. Squares Mod 4. Every integer $n \in \mathbb{Z}$ has a unique "remainder mod 4." Let us use the notation $(n \mod 4) \in \{0, 1, 2, 3\}$ to denote this remainder.

- (a) For all $x \in \mathbb{Z}$, show that $(x^2 \mod 4) \in \{0, 1\}$. [Hint: There are four kinds of integers. Square them all and see what you get.]
- (b) Let $x, y, z \in \mathbb{Z}$ be integers satisfying the equation

$$x^2 + y^2 = z^2.$$

Prove that at least one of x, y must be even. [Hint: Assume for contradiction that x and y are both odd, which implies that x^2 and y^2 are both odd. Now use part (a) to get a contradiction.]

(a) Let $x \in \mathbb{Z}$ be any integer. By the Division Theorem, we know that the remainder $(x \mod 4)$ is in the set $\{0, 1, 2, 3\}$. In other words, we know that x has one of the following forms:

- If $(x \mod 4) = 0$ then x = 4k + 0 for some $k \in \mathbb{Z}$.
- If $(x \mod 4) = 1$ then x = 4k + 1 for some $k \in \mathbb{Z}$.
- If $(x \mod 4) = 2$ then x = 4k + 2 for some $k \in \mathbb{Z}$.
- If $(x \mod 4) = 3$ then x = 4k + 3 for some $k \in \mathbb{Z}$.

Let us square all four kinds of numbers and see what happens:

• If $(x \mod 4) = 0$ then

$$x^{2} = (4k+0)^{2} = 16k^{2} = 4(4k^{2}) + 0,$$

and hence $(x^2 \mod 4) = 0$.

• If $(x \mod 4) = 1$ then

$$x^{2} = (4k+1)^{2} = 16k^{2} + 8k + 1 = 4(4k^{2} + 2k) + 1,$$

and hence $(x^2 \mod 4) = 1$.

• If $(x \mod 4) = 2$ then

$$x^{2} = (4k+2)^{2} = 16k^{2} + 16k + 4 = 4(4k^{2} + 4k + 1) + 0,$$

- and hence $(x^2 \mod 4) = 0$.
- If $(x \mod 4) = 3$ then

$$x^{2} = (4k+3)^{2} = 16k^{2} + 24k + 9 = 4(4k^{2} + 12k + 2) + 1,$$

and hence $(x^2 \mod 4) = 1$.

In any case, we find that $(x^2 \mod 4) \in \{0,1\}$. More precisely, we can say that

$$\begin{array}{l} (x \text{ is even}) \iff (x^2 \mod 4) = 0, \\ (x \text{ is odd}) \iff (x^2 \mod 4) = 1. \end{array}$$

(b) Proof: Suppose that integers $x, y, z \in \mathbb{Z}$ satisfy the equation

$$x^2 + y^2 = z^2,$$

and let us **assume for contradiction** that both x and y are odd. From part (a) this implies that $(x^2 \mod 4) = 1$ and $(y^2 \mod 4) = 1$, hence there exist integers $k, \ell \in \mathbb{Z}$ such that

$$x^2 = 4k + 1$$
 and $y^2 = 4\ell + 1$.

But then the equation

$$z^{2} = x^{2} + y^{2} = (4k + 1) + (4\ell + 1) = 4(k + \ell) + 2$$

implies that $(z^2 \mod 4) = 2$, which is a contradiction to part (a).

2. Euclidean Algorithm.

- (a) Apply the Euclidean Algorithm to compute the greatest common divisor of 62 and 24.
- (b) Apply the Extended Euclidean Algorithm to find all **integer** solutions $x, y \in \mathbb{Z}$ to the linear equation

$$62x + 24y = 4.$$

Hint: You need to find the complete solution of the "homogeneous" equation

$$62x_0 + 24y_0 = 0,$$

and one particular solution of the "non-homogeneous" equation

$$62x' + 24y' = 4.$$

Then the complete solution is $x = x_0 + x'$ and $y = y_0 + y'$.

I will do parts (a) and (b) at the same time. Let us consider the set of triples $(x, y, z) \in \mathbb{Z}^3$ that satisfy the equation 62x + 24y = z. We begin with the basic triples (1, 0, 62) and (0, 1, 24) and then apply the Euclidean Algorithm:

The smallest non-zero remainder is the greatest common divisor:

$$gcd(62, 24) = 2.$$

Since the gcd divides 4, we can multiply Row 6 by 2 to obtain a particular solution (x', y') = (-10, 26):

$$62(-5) + 42(13) = 2$$

$$62(-5 \cdot 2) + 42(13 \cdot 2) = 2 \cdot 2$$

$$62(-10) + 42(26) = 4.$$

And multiplying Row 7 by an arbitrary integer $k \in \mathbb{Z}$ gives the homogeneous solution $(x_0, y_0) = (12k, -13k)$:

$$62(12) + 42(-31) = 0$$

$$62(12 \cdot k) + 42(-31 \cdot k) = 0 \cdot k$$

$$62(12k) + 42(-31k) = 0.$$

Adding these gives the complete solution:

$$62(-10) + 42(26) = 4$$

+
$$62(12k) + 42(-31k) = 0$$

$$62(-10 + 12k) + 42(26 - 31k) = 4.$$

In other words, the complete solution is

$$(x,y) = (x' + x_0, y' + y_0) = (-10 + 12k, 26 - 13k)$$
 for any $k \in \mathbb{Z}$.

3. Divisibility. For all integers $a, b \in \mathbb{Z}$ we define the divisibility relation as follows:

"a divides b" = "a|b" = " $\exists k \in \mathbb{Z}, ak = b$."

Let $a, b, c \in \mathbb{Z}$ and prove the following properties of divisibility.

- (a) If a|b and b|c then a|c.
- (b) If a|b and a|c then a|(bx + cy) for all $x, y \in \mathbb{Z}$.
- (c) If a|b and b|a then $a = \pm b$.

(a) If a|b and b|c then there exist integers $k, \ell \in \mathbb{Z}$ with

$$b = ak$$
 and $c = b\ell$.

But then we have

$$c = b\ell = (ak)\ell = a(k\ell),$$

which implies that a|c.

(b) If a|b and a|c then there exist integers $k, \ell \in \mathbb{Z}$ with

b = ak and $c = a\ell$.

Then for any integers $x, y \in \mathbb{Z}$ we have

$$bx + cy = (ak)x + (a\ell)y = a(kx + \ell y),$$

which implies that a|(bx + cy).

(c) First let me repeat an observation from class:

If a|b and $b \neq 0$ then $|a| \leq |b|$.

To see this, suppose that a|b and $b \neq 0$. Since a|b we have b = ak for some $k \in \mathbb{Z}$ and then since $b \neq 0$ we also have $k \neq 0$. But then since k is a whole number and since |a| is positive we have

$$1 \le |k|$$
$$|a| \le |a| \cdot |k|$$
$$|a| \le |a \cdot k|$$
$$|a| \le |b|.$$

Now we solve part (c). Let a|b and b|a so that a = bk and $b = a\ell$ for some integers $k, \ell \in \mathbb{Z}$. If a = 0 then $b = a\ell = 0\ell = 0$ and if b = 0 then a = bk = 0k = 0. In either case the equation $a = \pm b$ is true. Otherwise, let us assume that $a \neq 0$ and $b \neq 0$. Then

$$a|b \text{ and } b \neq 0 \text{ implies } |a| \leq |b|$$

$$b|a \text{ and } a \neq 0 \text{ implies } |b| \leq |a|.$$

We conclude that

$$|a| = |b|$$

as desired.

4. Euclid's Lemma. Let $a, b, c \in \mathbb{Z}$ and prove the following:

if
$$a|bc$$
 and $gcd(a, b) = 1$ then $a|c$.

Hint: If gcd(a,b) = 1 then one may use the Extended Euclidean Algorithm to find some integers $x, y \in \mathbb{Z}$ satisfying

$$ax + by = 1$$

Multiply both sides of this equation by c and see what happens.

Proof: Consider integers $a, b, c \in \mathbb{Z}$ with a|(bc) and gcd(a, b) = 1. Since a|(bc) there exists an integer $k \in \mathbb{Z}$ such that

$$bc = ak$$

and since gcd(a, b) = 1 there exist integers $x, y \in \mathbb{Z}$ (from the Euclidean Algorithm) such that ax + by = 1.

Then multiplying both sides by c gives

$$1 = ax + by$$

$$c = c(ax + by)$$

$$= cax + (bc)y$$

$$= cax + (ak)y$$

$$= a(cx + ky),$$

and hence a|c.

Remark. You might see Euclid's Lemma stated in a slightly different form. Consider integers $a, b, p \in \mathbb{Z}$ where p is **prime**. Then the following is true:

If p|(ab) then p|a or p|b.

After a bit of work, this result leads to the theorem that every integer has a "unique prime factorization."