1. Squares Mod 4. Every integer $n \in \mathbb{Z}$ has a unique "remainder mod 4." Let us use the notation $(n \bmod 4) \in\{0,1,2,3\}$ to denote this remainder.
(a) For all $x \in \mathbb{Z}$, show that $\left(x^{2} \bmod 4\right) \in\{0,1\}$. [Hint: There are four kinds of integers. Square them all and see what you get.]
(b) Let $x, y, z \in \mathbb{Z}$ be integers satisfying the equation

$$
x^{2}+y^{2}=z^{2} .
$$

Prove that at least one of x, y must be even. [Hint: Assume for contradiction that x and y are both odd, which implies that x^{2} and y^{2} are both odd. Now use part (a) to get a contradiction.]
(a) Let $x \in \mathbb{Z}$ be any integer. By the Division Theorem, we know that the remainder $(x \bmod 4)$ is in the set $\{0,1,2,3\}$. In other words, we know that x has one of the following forms:

- If $(x \bmod 4)=0$ then $x=4 k+0$ for some $k \in \mathbb{Z}$.
- If $(x \bmod 4)=1$ then $x=4 k+1$ for some $k \in \mathbb{Z}$.
- If $(x \bmod 4)=2$ then $x=4 k+2$ for some $k \in \mathbb{Z}$.
- If $(x \bmod 4)=3$ then $x=4 k+3$ for some $k \in \mathbb{Z}$.

Let us square all four kinds of numbers and see what happens:

- If $(x \bmod 4)=0$ then

$$
x^{2}=(4 k+0)^{2}=16 k^{2}=4\left(4 k^{2}\right)+0,
$$

and hence $\left(x^{2} \bmod 4\right)=0$.

- If $(x \bmod 4)=1$ then

$$
x^{2}=(4 k+1)^{2}=16 k^{2}+8 k+1=4\left(4 k^{2}+2 k\right)+1
$$

and hence $\left(x^{2} \bmod 4\right)=1$.

- If $(x \bmod 4)=2$ then

$$
x^{2}=(4 k+2)^{2}=16 k^{2}+16 k+4=4\left(4 k^{2}+4 k+1\right)+0,
$$

and hence $\left(x^{2} \bmod 4\right)=0$.

- If $(x \bmod 4)=3$ then

$$
x^{2}=(4 k+3)^{2}=16 k^{2}+24 k+9=4\left(4 k^{2}+12 k+2\right)+1,
$$

and hence $\left(x^{2} \bmod 4\right)=1$.
In any case, we find that $\left(x^{2} \bmod 4\right) \in\{0,1\}$. More precisely, we can say that

$$
\begin{aligned}
(x \text { is even }) & \Leftrightarrow\left(x^{2} \bmod 4\right)=0, \\
(x \text { is odd }) & \Leftrightarrow \quad\left(x^{2} \bmod 4\right)=1 .
\end{aligned}
$$

(b) Proof: Suppose that integers $x, y, z \in \mathbb{Z}$ satisfy the equation

$$
x^{2}+y^{2}=z^{2}
$$

and let us assume for contradiction that both x and y are odd. From part (a) this implies that $\left(x^{2} \bmod 4\right)=1$ and $\left(y^{2} \bmod 4\right)=1$, hence there exist integers $k, \ell \in \mathbb{Z}$ such that

$$
x^{2}=4 k+1 \quad \text { and } \quad y^{2}=4 \ell+1 .
$$

But then the equation

$$
z^{2}=x^{2}+y^{2}=(4 k+1)+(4 \ell+1)=4(k+\ell)+2
$$

implies that $\left(z^{2} \bmod 4\right)=2$, which is a contradiction to part (a).

2. Euclidean Algorithm.

(a) Apply the Euclidean Algorithm to compute the greatest common divisor of 62 and 24.
(b) Apply the Extended Euclidean Algorithm to find all integer solutions $x, y \in \mathbb{Z}$ to the linear equation

$$
62 x+24 y=4
$$

Hint: You need to find the complete solution of the "homogeneous" equation

$$
62 x_{0}+24 y_{0}=0
$$

and one particular solution of the "non-homogeneous" equation

$$
62 x^{\prime}+24 y^{\prime}=4
$$

Then the complete solution is $x=x_{0}+x^{\prime}$ and $y=y_{0}+y^{\prime}$.
I will do parts (a) and (b) at the same time. Let us consider the set of triples $(x, y, z) \in \mathbb{Z}^{3}$ that satisfy the equation $62 x+24 y=z$. We begin with the basic triples $(1,0,62)$ and $(0,1,24)$ and then apply the Euclidean Algorithm:

x	y	z	
1	0	62	(Row 1)
0	1	24	(Row 2)
1	-2	14	(Row 3) $=($ Row 1) $-2 \cdot($ Row 2)
-1	3	10	(Row 4) $=($ Row 2) $-1 \cdot($ Row 3)
2	-4	4	(Row 5) $=($ Row 3) $-1 \cdot($ Row 4)
-5	13	2	(Row 6) $=($ Row 4) $-2 \cdot($ Row 5)
12	-31	0	(Row 7) $=($ Row 5) $-2 \cdot($ Row 6)

The smallest non-zero remainder is the greatest common divisor:

$$
\operatorname{gcd}(62,24)=2
$$

Since the gcd divides 4 , we can multiply Row 6 by 2 to obtain a particular solution $\left(x^{\prime}, y^{\prime}\right)=$ $(-10,26)$:

$$
\begin{aligned}
62(-5)+42(13) & =2 \\
62(-5 \cdot 2)+42(13 \cdot 2) & =2 \cdot 2 \\
62(-10)+42(26) & =4
\end{aligned}
$$

And multiplying Row 7 by an arbitrary integer $k \in \mathbb{Z}$ gives the homogeneous solution $\left(x_{0}, y_{0}\right)=$ $(12 k,-13 k)$:

$$
\begin{aligned}
62(12)+42(-31) & =0 \\
62(12 \cdot k)+42(-31 \cdot k) & =0 \cdot k \\
62(12 k)+42(-31 k) & =0
\end{aligned}
$$

Adding these gives the complete solution:

$$
\begin{aligned}
62(-10)+42(26) & =4 \\
+\quad 62(12 k)+42(-31 k) & =0 \\
\hline 62(-10+12 k)+42(26-31 k) & =4 .
\end{aligned}
$$

In other words, the complete solution is

$$
(x, y)=\left(x^{\prime}+x_{0}, y^{\prime}+y_{0}\right)=(-10+12 k, 26-13 k) \quad \text { for any } k \in \mathbb{Z}
$$

3. Divisibility. For all integers $a, b \in \mathbb{Z}$ we define the divisibility relation as follows:

$$
" a \text { divides } b "=" a \mid b "=" \exists k \in \mathbb{Z}, a k=b . "
$$

Let $a, b, c \in \mathbb{Z}$ and prove the following properties of divisibility.
(a) If $a \mid b$ and $b \mid c$ then $a \mid c$.
(b) If $a \mid b$ and $a \mid c$ then $a \mid(b x+c y)$ for all $x, y \in \mathbb{Z}$.
(c) If $a \mid b$ and $b \mid a$ then $a= \pm b$.
(a) If $a \mid b$ and $b \mid c$ then there exist integers $k, \ell \in \mathbb{Z}$ with

$$
b=a k \quad \text { and } \quad c=b \ell
$$

But then we have

$$
c=b \ell=(a k) \ell=a(k \ell)
$$

which implies that $a \mid c$.
(b) If $a \mid b$ and $a \mid c$ then there exist integers $k, \ell \in \mathbb{Z}$ with

$$
b=a k \quad \text { and } \quad c=a \ell
$$

Then for any integers $x, y \in \mathbb{Z}$ we have

$$
b x+c y=(a k) x+(a \ell) y=a(k x+\ell y)
$$

which implies that $a \mid(b x+c y)$.
(c) First let me repeat an observation from class:

$$
\text { If } a \mid b \text { and } b \neq 0 \text { then }|a| \leq|b|
$$

To see this, suppose that $a \mid b$ and $b \neq 0$. Since $a \mid b$ we have $b=a k$ for some $k \in \mathbb{Z}$ and then since $b \neq 0$ we also have $k \neq 0$. But then since k is a whole number and since $|a|$ is positive we have

$$
\begin{aligned}
1 & \leq|k| \\
|a| & \leq|a| \cdot|k| \\
|a| & \leq|a \cdot k| \\
|a| & \leq|b|
\end{aligned}
$$

Now we solve part (c). Let $a \mid b$ and $b \mid a$ so that $a=b k$ and $b=a \ell$ for some integers $k, \ell \in \mathbb{Z}$. If $a=0$ then $b=a \ell=0 \ell=0$ and if $b=0$ then $a=b k=0 k=0$. In either case the equation $a= \pm b$ is true. Otherwise, let us assume that $a \neq 0$ and $b \neq 0$. Then

$$
a \mid b \text { and } b \neq 0 \text { implies }|a| \leq|b|
$$

and

$$
b \mid a \text { and } a \neq 0 \text { implies }|b| \leq|a|
$$

We conclude that

$$
|a|=|b|
$$

as desired.
4. Euclid's Lemma. Let $a, b, c \in \mathbb{Z}$ and prove the following:

$$
\text { if } a \mid b c \text { and } \operatorname{gcd}(a, b)=1 \text { then } a \mid c \text {. }
$$

Hint: If $\operatorname{gcd}(a, b)=1$ then one may use the Extended Euclidean Algorithm to find some integers $x, y \in \mathbb{Z}$ satisfying

$$
a x+b y=1
$$

Multiply both sides of this equation by c and see what happens.
Proof: Consider integers $a, b, c \in \mathbb{Z}$ with $a \mid(b c)$ and $\operatorname{gcd}(a, b)=1$. Since $a \mid(b c)$ there exists an integer $k \in \mathbb{Z}$ such that

$$
b c=a k,
$$

and since $\operatorname{gcd}(a, b)=1$ there exist integers $x, y \in \mathbb{Z}$ (from the Euclidean Algorithm) such that

$$
a x+b y=1 .
$$

Then multiplying both sides by c gives

$$
\begin{aligned}
1 & =a x+b y \\
c & =c(a x+b y) \\
& =c a x+(b c) y \\
& =c a x+(a k) y \\
& =a(c x+k y),
\end{aligned}
$$

and hence $a \mid c$.

Remark. You might see Euclid's Lemma stated in a slightly different form. Consider integers $a, b, p \in \mathbb{Z}$ where p is prime. Then the following is true:

$$
\text { If } p \mid(a b) \text { then } p \mid a \text { or } p \mid b \text {. }
$$

After a bit of work, this result leads to the theorem that every integer has a "unique prime factorization."

