Logic in Mathematics

We've discussed how logic is encoded by computers. Now well l discuss how logic is used by humans.

Humans use logic for arguments/proofs, and the most important symbol in a proof is " \Longrightarrow ".

Here's the truth table

P	Q	$P \Longrightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

When we read it we say

$$
\begin{aligned}
" P \Rightarrow Q " & =" \text { if } P \text { then } Q " \\
& =" P \text { implies } Q "
\end{aligned}
$$

You might worry that $F \Rightarrow F=T$. In other words, "if $1+1=3$ then $1+1=5$ " is a true statement.

But don't worry. The truth table of \Rightarrow is NJT THE POINT!

Here's the point:
T flows along \Rightarrow

So, this is OK

$$
F \Rightarrow F \Rightarrow T \Rightarrow T \Rightarrow T
$$

This is OK

$$
F \Rightarrow F \Rightarrow F \Rightarrow F \Rightarrow F
$$

But this is NDT OK

$$
T \Rightarrow T \Rightarrow T(T) \Rightarrow F \Rightarrow F
$$

This T is not flowing properly.

What does it mean to prove a mathematical statement p ?

It's like drilling a well. We construct a chain of arrows backwards from P until we hit the axioms. Then I flows up!

Picture

In general, we want to drill "down", not in circles.
(The source of T)

The first formal use of proof was in oncient Greece (Thales \rightarrow Pythagoras m Euclid) The first theory of human argument t was written down by Aristotle.
Example: "syllogism"
All men are mortal
Promise 1
Socrates is a man
(a) Socrates is mortal Conclusion
"Therefore"
Aristotle considered this argument selfevidently valid. We can "prove" this with a truth table.

Let $P={ }^{"} x$ is socrates"

$$
\begin{aligned}
& Q=" x \text { is a man" } \\
& R=\text { " } x \text { is mortal" }
\end{aligned}
$$

The argument is $Q \Rightarrow R$

$$
\therefore \frac{P \Rightarrow Q}{P \Rightarrow R}
$$

Here is a truth table

P	Q	R	$P \Rightarrow Q$	$Q \Rightarrow R$	$P \Rightarrow R$
T	T	T	T	T	\longrightarrow

If the premises are T than the conclusion is T; so the argument is valid.

We can say this formally as follows. For all values $P, Q, R \in\{T, F\}$ we have $(((Q \Rightarrow R) \wedge(P \Rightarrow Q)) \Rightarrow(P \Rightarrow R))=T$. "if $Q \Rightarrow R$ and $P \Rightarrow Q$ then $P \Rightarrow R "$.

In general an (Aristotelian) argument looks like

P_{1}	Premise 1
P_{2}	Premise 2
\vdots	\vdots
$\therefore Q$	Premise k
$\therefore \quad \therefore$	\therefore Conclusion

We say the argument is valid if for all Boolean inputs we have

$$
\left(\left(P_{1} \wedge P_{2} \wedge \cdots \wedge P_{k}\right) \Rightarrow Q\right)=T
$$

Example: "Modus Ponens"

$$
\begin{aligned}
& P \Rightarrow Q \quad \text { If today is Monday I will teach } 30^{\circ} \\
& \text { P Today is Monday } \\
& \therefore Q \quad \therefore \text { I will teach } 309 \\
& \text { VALID? }
\end{aligned}
$$

We analyze the statement $((P \Rightarrow Q) \wedge P) \Rightarrow Q$

P	Q	$P \Rightarrow Q$	$(P \Rightarrow Q) \wedge P$	$((P \Rightarrow Q) \wedge P) \Rightarrow Q$.
T	T	T	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

The argument is valid.
Another Example: "Modes Tollens"
$P \Rightarrow Q$
$\neg Q$
$\neg P$

Every dog has hair
x has ho hair
mas not a to
x is not a dog
VALID?
We analyze $((P \Rightarrow Q) \wedge \neg Q) \Rightarrow \neg P$.

P	Q	$\neg P$	$\neg Q$	$P \Rightarrow Q$	$(P \Rightarrow Q) \wedge \neg Q$	$((P \Rightarrow Q) \wedge \neg Q) \Rightarrow \neg P$
T	T	F	F	T	F	T
T	F	F	T	F	F	T
F	T	T	F	T	F	T
F	F	T	T	T	T	T

"Modus Pollens" is related to an important principle of logic.

A The Principle of contrapositive.
for all statements P, Q we have

$$
\begin{aligned}
" P \Rightarrow Q " & =" \neg Q \Rightarrow \neg P " \\
& \uparrow=Q^{\prime \prime} \\
& \operatorname{logically} \text { equivalent }
\end{aligned}
$$

Proof: Look at the truth table

Note that "P $\Rightarrow Q$ " $=$ " $\neg Q \Rightarrow \neg P$ "

$$
\text { but " } P \Rightarrow Q " \neq " Q \Rightarrow P "
$$

Here's an argument from Lewis Carroll:
Babies are illogical
Nobody is despised who can manage a crocodile.
Illogical persons are despised.
Therefore, babies cannot manage crocodiles.
VALID?

Let $P=$ " x is a baby"
$Q=$ " x is illogical
$R=$ " x con manage a crocodile"
$S=" x$ is despised".
The argument is

$$
\begin{gathered}
P \Rightarrow Q \\
R \Rightarrow \neg S \\
Q \Rightarrow S \\
\therefore P \Rightarrow \neg R
\end{gathered}
$$

We can replace $R \Rightarrow \neg S$ by its equivalent contrapositive $S \Rightarrow \neg R$.
to get $P \Rightarrow Q$

$$
\begin{aligned}
S & \Rightarrow \neg R \\
Q & \Rightarrow S \\
\therefore P & \Rightarrow 7 R
\end{aligned}
$$

We can rearrange the order of the premises to get

$$
\begin{gathered}
P \Rightarrow Q \\
Q \Rightarrow S \\
S \Rightarrow \neg R \\
P M \Rightarrow R
\end{gathered}
$$

This is valid. It is just two "syllogisms" put together. The generalized syllogism

$$
\begin{gathered}
P_{1} \Rightarrow P_{2} \\
P_{2} \Rightarrow P_{3} \\
\vdots \\
P_{p_{21}} \Rightarrow P_{12} \\
\therefore P_{1} \Rightarrow P_{12}
\end{gathered}
$$

is valid. It is sometimes called a "sorites", or a "polysyllogism".

It is proved by induction.

Q: Do you like the word "polysyllogism"?

The Contrapositive

Today: More about " \Rightarrow ".
Recall the truth table

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

The disjunctive normal form is

$$
P \Rightarrow Q="(P \wedge Q) \vee(\neg P \wedge Q) \vee(P \wedge \neg Q)
$$

but this is not very nice. Instead look at $\neg " P \Rightarrow Q "=" P \nRightarrow Q$ "

P	Q	$P \nRightarrow Q$
T	T	F
T	F	T
F	T	F
F	F	F

The disjunctive normal form is

$$
" P \nRightarrow Q^{\prime \prime}=" P \wedge \neg Q "
$$

and this is nice. Then using de Morgan we have

$$
\begin{aligned}
" P \Rightarrow Q^{\prime \prime} & =\neg^{\prime \prime} P \nRightarrow Q^{\prime \prime} \\
& =\neg(P \wedge \neg Q) \\
& =\neg P \vee \neg \neg Q \\
& =\neg P \vee Q
\end{aligned}
$$

This con be useful:

$$
{ }^{\prime \prime} P Q^{\prime \prime}=\neg P \vee Q^{\prime \prime}
$$

For example, we can use it to demonstrate the

* Principle of Contrapositive:

$$
" P \Rightarrow Q^{\prime \prime}=" \neg Q \Rightarrow \neg P^{\prime \prime}
$$

Proof: " $P \Rightarrow Q "=" \neg P \vee Q$ "

$$
\begin{aligned}
& =" Q \vee \neg P " \\
& =" \neg(\neg Q) \vee(\neg P) " \\
& =" \neg Q \Rightarrow \neg P "
\end{aligned}
$$

Q: What is the contrapositive in the language of set theory?

Recall the "dictionary"

$$
\begin{aligned}
& A \cup B=\{x \in U: x \in A \text { oR } x \in B\} \\
& A \cap B=\{x \in U: x \in A \text { AND } x \in B\} \\
& A^{c}=\{x \in U: N \Delta T \quad x \in A\}
\end{aligned}
$$

Now we have one more

$$
\begin{aligned}
" A \subseteq B^{\prime \prime}= & " x \in A \Rightarrow x<B \\
& (\text { if } x \in A \text { then } x \in B)
\end{aligned}
$$

The contrapositive says

$$
\begin{aligned}
" A \subseteq B^{\prime \prime} & =" x \in A \Rightarrow x \in B \\
& =" x \notin B \Rightarrow x \notin A^{"} \\
& =" x \in B^{c} \Rightarrow x \in A^{c "} \\
& =" B^{c} \subseteq A^{c} "
\end{aligned}
$$

In summary:
The Contrapositive for fees says

$$
" A \leq B=B^{c} \subseteq A^{c}
$$

Recall how we define equality of sets:

$$
\begin{aligned}
" A=B " & =" A \leq B \quad A N D \quad B \leq A " \\
& =" x \in A \Rightarrow x \in B \quad A N D \quad x \in B \Rightarrow x \in A "
\end{aligned}
$$

We have a name for this operation:
Given $P, Q \in\{T, F\}$ we define

$$
\begin{aligned}
& P \Leftrightarrow Q:=P \Rightarrow Q \text { AND Q } \quad=P{ }^{\prime \prime} \\
& (P \Leftrightarrow Q)=(P \Rightarrow Q) \wedge(Q \Rightarrow P)
\end{aligned}
$$

Truth table

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$P \Leftrightarrow Q$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

so $\Leftrightarrow a<t s$ like an equals sign. We call it logical equivalent We often say "P@ ${ }^{" P}=" P$ if and only if Q "
based on the old-fashisned uses

$$
\begin{aligned}
& " Q \Rightarrow P "={ }^{"} Q \text { if } Q " \\
& " P \Rightarrow Q "={ }^{"} P \text { only if } Q "
\end{aligned}
$$

Finally, we can say this:

$$
\begin{aligned}
" A=B^{\prime \prime} & =" x \in A \Longleftrightarrow x \in B \\
& =" x \in A \text { if and only if } x \in B "
\end{aligned}
$$

We have now seen all the logic we will ever need.

Q: How is logic used in mathematics?
First we need a bit of math to work with. Recall the sect of integers

$$
\begin{aligned}
& \mathbb{Z}=\{\cdots,-3,-2,-1,0,1,2,3, \cdots\} \\
& (Z \text { is foe "Zahlen") }
\end{aligned}
$$

"was sind and was sollen die Zahen?"
Richard Dedekind, 1888.
Given $n \in \mathbb{Z}$ we say that n is even if there exists $k \in \mathbb{Z}$ such that $n=2 k$.
" n is even": " $\exists k, n=2 k$ "
Otherwise we say that n is odd.

$$
\begin{aligned}
\text { "n is odd" } & :=7{ }^{4} n \text { is even" } \\
& =7{ }^{"} \exists k \in \mathbb{R}, n=2 k " \\
& =" \forall k \in \mathbb{R}, n \neq 2 k "
\end{aligned}
$$

Maybe there is a nicer way to say that n is odd? Yes, in fact we have " n is odd" $=$ " $\exists k \in \mathbb{R}, n=2 k+1$ " but we won't prove this today. (Thinking Problem: How could we possibly prove this? We would need a formal definition of the integers, which we din't have get,)

Let's just assume it for now.
Problem: Given $m, n \in \mathbb{Z}$, prove that "if $m n$ is even then m is even or n is even."

First attempt at proof:
If $m n$ is even then $\exists k \in \mathbb{R}$ such that $m n=2 k$. We wont to show that $\exists a \in \mathbb{Z}$ such that $m=2 a$, or $\exists b \in \lambda$ such that $n=2 b$ or both.
Where would this a or l come from?

First attempt fails.

Second attempt at proof:
Let $P=$ "mn is even"
$Q=" m$ is even""
$R=$ " n is even"
we wont to prove that

$$
P \Rightarrow(Q \vee R)
$$

Pres this help? Maybe we can use Boolean algebra to put this in a more convenient form...

Let's try the contrapositive:

$$
\begin{aligned}
" P \Rightarrow(Q \vee R) & =" \neg(Q \vee R) \Rightarrow \neg P " \\
& ="(\neg Q \wedge \neg R) \Rightarrow \neg P "
\end{aligned}
$$

$=$ if m and n are both odd
then the product $m n$ is odd"

Let's try to prove that.
If m and n are both odd, then there exist $R, l \in \mathbb{Z}$ such that

$$
m=2 k+1 \text { and } n=2 l+1
$$

Then the product is

$$
\begin{aligned}
m n & =(2 k+1)(2 l+1) \\
& =4 k l+2 k+2 l+1 \\
& =2(2 k l+k+l)+1
\end{aligned}
$$

Hence $\exists z \in \mathbb{Z}$ (in particular, $z=2 k l+k+l)$ such that $m n=2 z+1$.

We conclude that $m n$ is odd, as desired.

Done.
second attempt succeeded.

Now let's write it up nicely.
Theorem: Given $m, n \in \mathbb{Z}$ we have that if $m n$ is even then m or n is even.

Proof: we will show the contrapositive statement. That is, we will show that if m and n are both odd, then mn is odd.

So assume that $m=2 k+1$ and $n=2 l+1$.
Then the product is

$$
\begin{aligned}
m n & =(2 k+1)(2 l+1) \\
& =4 k l+2 k+2 l+1 \\
& =2(2 k l+k+l)+1
\end{aligned}
$$

wish is odd, you like.

We use logic in mathematics to be clear about what exactly we are proving, and to express it in the most convenient way.

Epilogue: Green $n \in \mathbb{R}$, why is it true that

$$
\begin{gathered}
" \forall k \in \pi, n=2 l=" \exists l \in \pi, n=2 \ell+1 \\
\text { not } " ?
\end{gathered}
$$

This has nothing to do with logic. It is a special fact about the integers called the Division Theorem.

* The Division Theorem:

Given $a, b \in \pi$ with $b \neq 0$, there exist integers \& $r \in \mathbb{Z}$ such that

- $a=8 b+r$
- $0 \leq r<|b|$

This q, r are called the quotient and "remainder" when a is divided by b.

They are unique in the sense that if

$$
\begin{array}{ll}
a=q_{1} b+r_{1} & \text { and } \\
0 \leqslant r_{1}<|b| & a=q_{2} b+r_{2} \\
& 0 \leqslant r_{2}<|b|,
\end{array}
$$

it follows that $q_{1}=q_{2}$ and $r_{1}=r_{2}$.

Proof postponed
As a consequence of the Division Theorem, we see that every integer $n \in \mathbb{Z}$ has the form $n=2 k$ or $n=2 k+1$ for some $k \in \mathbb{Z}$.

Proof: Given $n \in \mathbb{Z}$, we can divide it by 2 to get

$$
\begin{array}{ll}
n=2 q+r & \\
0 \leqslant r<2 \quad(r=0 \text { or } r=1)
\end{array}
$$

If $r=0$ we say n is even: If $r=1$ we say n is odd. Note that this expression is unique (i.e. It is nat possible for n to le booth even and odd.)

This theorem is the FOUNDATION of number theory. I will show you the traditional proof, and magke this will suggest what the formal definition of \mathbb{Z} should be....
\& Traditional Proof of the Div. Theorem:
Let $a, b \in \mathbb{Z}$ with $b \neq 0$. We want to somehow find $q, r \in \mathbb{Z}$ with the desired properties.

Here's the trick. Consider the set

$$
\begin{aligned}
S & =\{a-k k: k \in \mathbb{Z}\} \\
& =\{\cdots, a-2 b, a-b, a, a+b, a+2 b, \ldots\}
\end{aligned}
$$

Since $b \neq 0$ this sect contains both negative and positive numbers. Let

$$
S^{+}=\{x \in S: x \geqslant 0\} \subseteq S
$$

Since $S^{+} \neq \phi$, it contains a smallest element. Call this smallest element

$$
r \in S^{+}
$$

Since $r \in S$ we know that there exists $k \in \pi$ such that

$$
r=a-k b
$$

Why don't we just call this $k=q$?
Then we have

$$
\begin{aligned}
a-q b & =r \\
a & =q b+r
\end{aligned}
$$

Good. But we still need to show that $0 \leqslant r<|b|$. Since $r \in S^{+}$ by definition we know that $0 \leqslant r$. If $r=0$ we're done, so suppose that we have $0<r$.

Now we want tr e show that

$$
r<|b|
$$

In other words, we wont to show that $r \geqslant|b|$ is impossible.

To demonstrate that $r \geqslant|b|$ is impossible we will show that it leads to a CONTRAPICTION. If $r \geqslant|t|$ then subtracting $|b|$ from both sides gives

$$
\begin{aligned}
r \geqslant|b| \\
r-|b| \geqslant|b|-|b| \\
r-|b| \geqslant 0
\end{aligned}
$$

But note that
depending if 6 is positive or negative posit

$$
r-|b|=a-q b-|b|=a-(q \pm 1) b
$$

Since

$$
\begin{aligned}
r-|b| & =a-(q \pm 1) b \\
& =a-(\text { something }) b
\end{aligned}
$$

and $r-|b| \geqslant 0$
We conclude that $r-|b|$ is an element of the set S^{+}. But note that

$$
\begin{array}{r}
-|b|<0 \\
r-|b|<r
\end{array}
$$

(We added r to both sides of $-|b|<0$,).

Didn't we define define r as the smallest element of $s t$?

Yes we did. So we have reached the desired CONTRADICTION.

We conclude that $r \geqslant 1101$ is impossible and hence we have

$$
0 \leqslant r<|b|
$$

as desired.
[Remark: This is already enough prove that if $n \in \mathbb{Z}$ is not even then $n=2 k+1$ for some $k \in \mathbb{R}$.

Indeed, suppose $n \in \mathbb{Z}$ is not even. By the above proof $\exists q, r \in \mathbb{Z}$ such that

$$
n=2 q+r
$$

and $0 \leq r<2$ (ie. $r=0$ or 1)
Since n is not even we know that $r \neq 0$. Hence $r=1$ and we have $n=2 q+1$.]

We have shown that $\exists q, r \in \mathbb{Z}$ with the desired properties, but we still need to show that they are UNIQUE.

So suppose that we have

$$
\begin{array}{ll}
a=q_{1} b+r_{1} & \text { and } a=q_{2} b+r_{2} \\
0 \leqslant r_{1}<|b| & 0 \leqslant r_{2}<|b|
\end{array}
$$

In this case we wont to prove that

$$
q_{1}=q_{2} \quad \text { and } \quad r_{1}=r_{2}
$$

First we will show that $r_{1} \neq r_{2}$ is impossible. Indeed, if $r_{1} \neq r_{2}$ (let's say $r_{1}<r_{2}$) then we have
(*) $0=r_{1}-r_{1}<r_{2}-r_{1} \leqslant r_{2}<|b|$.
[Here we used the facts

$$
\begin{aligned}
r_{1}<r_{2} & \Rightarrow r_{1}-r_{1}<r_{2}-r_{1} \\
\text { and }-r_{1} \leqslant 0 & \Rightarrow r_{2}-r_{1} \leqslant r_{2}
\end{aligned}
$$

But since $a=q_{1} b+r_{1}$ and $a=q_{2} b+r_{2}$ we have

$$
\begin{aligned}
& q_{1} b+r_{1}=q_{2} b+r_{2} \\
& q_{1} b-q_{2} b=r_{2}-r_{1} \\
& \left(q_{1}-q_{2}\right) b=\left(r_{2}-r_{1}\right)
\end{aligned}
$$

Since $r_{2}-r_{1} \neq 0$ and $b \neq 0$ we know that $q_{1}-q_{2} \neq 0$. Since $q_{1}-q_{2}$ is an integer (ie, a "whole number"), this implies that

$$
\begin{aligned}
& 1 \leq\left|q_{1}-q_{2}\right| \\
& |b| \leq\left|q_{1}-q_{2}\right| \cdot|b| \\
& |b|
\end{aligned}
$$

But this CONTRADICTS the fact that $r_{2}-r_{1}<|k|$, which we know from (*).

This contradiction shows that $r_{1} \neq r_{2}$ is impossible, and hence $r_{1}=r_{2}$, as desired.

Finally, we have

$$
\left(q_{1}-q_{2}\right) b=\left(r_{2}-r_{1}\right)=0 .
$$

Since $b \neq 0$, this implies that

$$
\begin{aligned}
q_{1}-q_{2} & =0 \\
q_{1} & =q_{2}
\end{aligned}
$$

We are done.

Wow. That was a real theorem!
To know what the integers are, we should take careful account of all of the properties that we used in the proof.

Here are the properties I think we used

Properties of Addition:

$$
\begin{aligned}
& a+b=b+a \\
& a+(b+c)=(a+b)+c \\
& a+0=a \\
& \forall a \in \mathbb{Z}, \exists b \in \mathbb{R}, a+b=0 \quad \text { ("subtraction") }
\end{aligned}
$$

Properties of Multiplication:

$$
\begin{aligned}
a b & =b a \\
a(b c) & =(a b) c \\
a 1 & =a
\end{aligned}
$$

(there is no property of "division, but we did use the property of "cancellation" That is, if $a b=a c$ and $a \neq 0$, then $b=c$)

Property of Distribution:

$$
a(b+c)=a b+a c
$$

Properties of Order:

$$
\begin{aligned}
& 0<1 \quad(\text { meaning } 0 \leqslant 1 \text { and } 0 \neq 1) \\
& a \leq b \Rightarrow a+c \leq b+c \\
& a \leq b \text { and } 0 \leq c \Rightarrow a c \leq b c
\end{aligned}
$$

.... Did we think of everything?
NO. Because the rational numbers
(I) and the real numbers \mathbb{R} also satisfy all of these properties.

What is it about \mathbb{Z} that distinguishes it from, say, \mathbb{Q} and \mathbb{R} ?

This one puzzled people
for a long time.
Stay twined?

The Definition of "Numbers"
Here we are following in the footsteps of
Richard Dedekind (1881-1916). Ill encapsulate his ideas in a

Friendly Definition of \mathbb{Z}
\mathbb{Z} is a set equipped with

- an equivalence relation " $=$ "
$-\forall a \in \mathbb{R}, a=a$,
$-\forall a, k \in \mathbb{Z}, a=b \Rightarrow b=a$,
$-\forall a, b, c \in \mathbb{Z}, a=b$ and $b=c \Rightarrow a=c$.
- a total ordering " \leqslant "
$-\forall a, b \in \mathbb{R}$, $a \leq b$ and $b \leqslant a \Rightarrow a=b$,
$-\forall a, b, c \in \mathbb{R}, a \leq b$ and $b \leq c \Rightarrow a \leq c$,
$-\forall a, b \in \mathbb{R}, a \leqslant b$ or $b \leqslant a$.
- two Urinary operations

$$
\begin{aligned}
& +: \pi^{2} \rightarrow \mathbb{R} \\
& x: \mathbb{R}^{2} \rightarrow \mathbb{R}
\end{aligned}
$$

- two special elements $0,1 \in \mathbb{Z}$
satisfying appoximataly twelve axioms (See the handout.)

Eleven of the axioms are fairly obvious, but there is one axiom that is fairly subtle, It took a long time for people to realize that this is an axiom and not a theorem.

Axiom of Well-Ordering:
Every non-empty set of positive (or non-negative; it's not important) integers has a smallest element.
Formally: $\forall x \subseteq \mathbb{N}$ such that $x \neq \varnothing$, $\exists x \in X$ such that $\forall y \in X, x \leqslant y$.
[Remark: While the first 11 axioms are "algebraic", the well-ordering property is "logical" in nature.]

Yes, indeed, we needed well-ordering in our proof of the Division. Theorem (look back and see).

Now our definition of \mathbb{Z} is complete.

Dedekind did this in 1888 .
Giuseppe feano (1858-1932) come along in 1889 and compactified Dedekind's definition.

Peano's Definition of N
\mathbb{N} is a set equipped with

- on equivalence relation " "
- a function $S: \mathbb{N} \rightarrow \mathbb{N}$
- a special element $0 \in \mathbb{N}$
satisfying just three axioms:

1. $\forall n \in \mathbb{N}, \quad S(n) \neq 0$
2. $\forall m, n \in \mathbb{N}$ we have

$$
S(m)=S(n) \Longrightarrow m=n .
$$

3. If a set $X \subseteq \mathbb{N}$ satisfies

$$
\begin{aligned}
& -0 \in X \\
& -\forall n \in \mathbb{N}, n \in X \Rightarrow S(n) \in X
\end{aligned}
$$

then it follows that $X=\mathbb{N}$.

Remarks on Peans:

- We are supposed to think

$$
S(n)=" n+1 "
$$

(s is for "successor").

- The third axiom is called the principle (or axiom) of induction. It is logically equivalent to well-ordering but we probably won't prove this.
- Induction is subtle in the friendly definition (we almost missed it 1) but it becomes the very heart of Peano's definition

Moral of the story:
It is not obvious, but
principle of
induction \quad concept of

Thanks for your attention.

Greatest Common Divisor and
The Euclidean Algorithm

Next Topic: Greatest common divisor.
Let $a, k \in \lambda$ with a \& lo not both zero. Without loss of generality, let's assume that $a \neq 0$. Now consider the set of common divisors

$$
\operatorname{Div}(a, b)=\{d \in \mathbb{Z}: d|a \wedge d| b\}
$$

Note that for all $d \in \operatorname{Div}(a, b)$ we have d|a, and since $a \neq 0$ this implies that $d \leqslant|d| \leqslant|a|$. We conclude that the set $\operatorname{Div}(a, b)$ is bounded above by $|a|$.
[If $b \neq 0$, then the set is also bounded above by $|b|$. What happens if a \& b are both zero?]

Since $\operatorname{Div}(a, b)$ is bounded above, wellordering says that it has a greatest element. We will denote this element by $\operatorname{gcd}(9, b)$ and call if the "greatest common divisor" of $a \& b$.
Note: Since we also have $1 \in \operatorname{Div}(a, b)$ [indeed, 1 divides every integer] and since $\operatorname{gcd}(a, b)$ is the greatest element of $\operatorname{Div}(a, b)$ we conclude that

$$
1 \leqslant \operatorname{gcd}(a, b)
$$

Recall that every integer divides O, so if $n \neq 0$ we have

$$
\begin{aligned}
\operatorname{Div}(n, 0) & =\operatorname{Div}(n) \\
& =\{d \in \mathbb{R}: d \mid n\}
\end{aligned}
$$

Since the greatest divisor of n is $|n|$,
we conclude that $\operatorname{gcd}(n, 0)=|n|$.
Q: If a, b are both nonzero, how can we compute $\operatorname{gcd}(a, b)$?

A: There are two ways.
(1) The bad way

We know that $1 \leq \operatorname{gcd}(a, b) \leq \min \{|a|,|b|\}$, since this is a finite set we can just test every number in this range to see if it divides a \& b and report the largest number that does.

Example: To compute ged $(-8,3 \Delta)$, we test every number from 1 to 8 .

We conclude that $\operatorname{gcd}(-8,80)=2$,
When a, b are large this method is very slow, and it doesn't give us any understanding of the situation.
(2) The good way.

This method was called "antenaresis" by Euchd (Book VII Prop 2) and today we call it the "Euclidean Algorithm". If was also Known to the Indian mathematician Brahmagupta (c.628), who called it "kutak a" (the "pulverizer"). Anyway, it's a famous algorithm.

Here's an example:
To compute $\operatorname{gcd}(1053,481)$ we first divide the bigger by the smaller:

$$
1053=2 \cdot 481+91
$$

Then we "repeat" the process:

$$
\begin{aligned}
& \underline{481}=5 \cdot \underline{91}+26 \\
& \underline{91}=3 \cdot 26+13 \\
& 26=2 \cdot 13+0
\end{aligned}
$$

The last nonzero remainder is the ged. we conclude that $\operatorname{gcd}(1053,481)=13$.

That's a pretty fast algorithm [it used 4 divisions instead of 4817

But why does it work? The proof is based on the following Lemma.

* Lemma: Consider $a, b \in \mathbb{Z}$, not both zero, and suppose we have $q, r \in \mathbb{Z}$ such that $a=q b+r$. [These q, r are not necessarily the quotient and remainder, but they might be.] Then we have

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)
$$

Proof: We will show that the sets $\operatorname{Div}(a, b)$ \& $\operatorname{Div}(b, r)$ are equal ont it will follow that their greatest elements are equal. To do this we must prove two separate things,
(i) $\operatorname{Div}(a, b) \subseteq \operatorname{Div}(b, r)$
(ii) $\operatorname{Div}(b, r) \subseteq \operatorname{Div}(a, b)$.

For (i) assume that $d \in \operatorname{Div}(a, b)$ so that $d|a \& d| b$. Since $r=a-q b$ it follows from HW2 problem $3(b)$ that d / r, hence $d \in \operatorname{Div}(b, r)$ as desired.

For (ii) assume that $d \in \operatorname{Div}(b, r)$ so that $d|b \& d| r$. Since $a=q b+r$ it follows from the some result that da, hence $d \in D(a, b)$ as desired.

Maybe you can see already why this 6 mma implies the result we want. The Key observation is that if $|a|>|b|$ and $|b|>|r|$ then $g c d(b, r)$ is easier to compute than $\operatorname{gcd}(a, b)$ Stay tuned...

* Theorem (Euclidean Algorithon):

Consider $a, b \in \mathbb{Z}$ with $b \neq 0$. To compute $\operatorname{gcd}(a, b)$ we first apply the Division Theorem to $a \bmod l o$ to obtain

$$
a=q_{1} b+r_{1} \quad \text { with } 0 \leqslant r_{1}<|b|
$$

If $r_{1} \neq 0$ then we con apply the Division Theorem to b mod r_{1} to obtain

$$
b=q_{2} r_{1}+r_{2} \text { with } 0 \leqslant r_{2}<r_{1} \text {. }
$$

If $r_{2} \neq 0$ then we obtain

$$
r_{1}=q_{3} r_{2}+r_{3} \text { with } 0 \leq r_{3}<r_{2}
$$

I claim that this process eventually terminates; ie; $\exists n \in \mathbb{N}$ such that

$$
r_{n-1}>0 \text { and } r_{n}=0
$$

Furthermore, I claim that this r is equal to $\operatorname{gcd}(a, b)$.

Proof: Suppose for contradiction that The process never terminates. Then we obtain an infinite descending sequence

$$
|b|=r_{0}>r_{1}>r_{2}>r_{3}>\cdots \geqslant 0
$$

Let $S=\left\{r_{0}, r_{1}, r_{2}, r_{3}, \cdots\right\} \leq \mathbb{N}$. Since this set is bounded below (by O), Well-ordering says that S contains a smallest element, say $m \in S$. Since $m \in S$ we must have $m=r_{i}$ for some $i \in \mathbb{N}$. But then $r_{i+1} \in S$ is a smaller element of S. Contradiction.

We conclude that $\exists n \in \mathbb{N}$ with $r_{n-1}>0$ and $r_{n}=0$. To prove that r_{n-1} is the ged of a \& b, we use the previous lemma to curtain

$$
\begin{aligned}
\operatorname{gcd}(a, b) & =\operatorname{gcd}\left(b, r_{1}\right) \\
& =\operatorname{gcd}\left(r_{1}, r_{2}\right) \\
& =\operatorname{gcd}\left(r_{2}, r_{3}\right) \\
& \vdots \\
& =\operatorname{gcd}\left(r_{n-1}, r_{n}\right) \\
& =\operatorname{gcd}\left(r_{n-1}, 0\right)=r_{n-1}
\end{aligned}
$$

Example: Let's use this to compute the ged of 385 and 84 .

$$
\begin{aligned}
& \underline{385}=9 \cdot \underline{84}+\underline{49} \\
& \underline{84}=1 \cdot 49+35 \\
& \underline{49}=1 \cdot \underline{35}+\underline{14} \\
& \underline{35}=2 \cdot \underline{14}+7 \text { last nonzero remainder } \\
& \underline{14}=2 \cdot 7+0
\end{aligned}
$$

We conclucle that $\operatorname{gcd}(385,84)=7$

Q: OK, great. But what can we do with ged's?

A: We can use them to solve the following problem of number theory.

Linear Diophantine Equations:
Let $a, b, c \in \mathbb{Z}$. Our goal is to find all integer solutions $x, y \in \mathbb{Z}$ to the "linear Diophantine equation"
(*)

$$
a x+b y=c
$$

How? First note that there are some obvious restrictions.

- If $a=b=0$ and $c \neq 0$ then there are NO sOLUTIONS. If $a=c=0$ and $c=0$ then all $x, y \in \mathbb{Z}$ are solutions.
- So assume that $a, b \in \mathbb{Z}$ are not both zero and let $d=\operatorname{gcd}(a, b)$. Say that $a=d a^{\prime}$ and $b=d b^{\prime}$ for some integers $a^{\prime}, b^{\prime} \in \mathbb{Z}$.

Now if $x, y \in \mathbb{Z}$ is a solution to (*) then we have

$$
\begin{aligned}
c & =a x+b y \\
& =d a^{\prime} x+d b^{\prime} y \\
& =d\left(a^{\prime} x+b^{\prime} y\right)
\end{aligned}
$$

which implies that d / c.
Conclusion: If $\operatorname{gcd}(a, b) X c$ then equation (*) has NO SOLUTIONS.

- So let $d=\operatorname{gcd}(a, b)$ and assume that $d \mid c$, say $c=d c^{\prime}$ for some $c^{\prime} \in \mathbb{Z}$.

Then equation ($*$ becomes

$$
\begin{aligned}
a x+b y & =c \\
d a^{\prime} x+d^{\prime} b^{\prime} y & =d c^{\prime} \\
d\left(a^{\prime} x+b^{\prime} y\right) & =d c^{\prime} \\
a^{\prime} x+b^{\prime} y & =c^{\prime}
\end{aligned}
$$

by canceling d from both sides. [This is allowed because $d \neq 0$.].

The new equation
(*)

$$
a^{\prime} x+b^{\prime} y=c^{\prime}
$$

is called the "reduced form" of ($(*)$, and it has exactly the some set of solutions.

Proof: If $x, y \in \mathbb{Z}$ solves (, then

$$
\begin{aligned}
a x+b y & =c \\
d^{\prime} x+d^{\prime} b^{\prime} y & =d^{\prime} \\
a^{\prime} x+b^{\prime} y & =c^{\prime}
\end{aligned}
$$

Conversely, if $x, y \in \mathbb{Z}$ solves ($* *$), then

$$
\begin{aligned}
a^{\prime} x+b^{\prime} y & =c^{\prime} \\
d\left(a^{\prime} x+b^{\prime} y\right) & =d c^{\prime} \\
d a^{\prime} x+d b^{\prime} y & =d c^{\prime} \\
a x+b y & =c
\end{aligned}
$$

Weill return to this on Monday.

Linear Equations of Integers

Last time we discussed the Euclidean Algorithm and proved that it works.

Example: Compute $\operatorname{gcl}(8,5)$.

$$
\begin{aligned}
& 8=1 \cdot \underline{5}+\underline{3} \\
& \underline{5}=1 \cdot 3+2 \\
& 3=1 \cdot 2+1 \\
& 2=2 \cdot 1+0 \quad \operatorname{STDP} .
\end{aligned}
$$

We conclude that $\operatorname{gcd}(8,5)=1$.
Jargon: If $\operatorname{ged}(a, b)=1$ then we say the integers a \& b are coprime (or relatively prime). In this case we have

$$
\operatorname{Div}(a, b)=\{ \pm 1\}
$$

We conclude that $8 \& 5$ are coprime.
Q: So what?
A: we will use this to salve the linear Diophantine equation
(*)

$$
24 x+15 y=3
$$

The word "Diophantine" [after
Diophantus of Alexandria (C. AD 200-300)] means that we are only interested in integer solutions $x, y \in \mathbb{Z}$.

The first step is to compute $\operatorname{gcd}(24,15)$:

$$
\begin{aligned}
24 & =1 \cdot 15+9 \\
15 & =1 \cdot 9+6 \\
9 & =1 \cdot 6+3 \\
6 & =2 \cdot 3+0
\end{aligned} \Rightarrow \operatorname{gcd}(24,15)=3 .
$$

Now we divide both sides of (*) by 3 to get the "reduced equation":

$$
8 x+5 y=1
$$

Note that $x, y \in \mathbb{Z}$ is a solution of (*) if and only if it is a solution of $(* *$, so we only have to salve **.

There are two steps:
(1) Find any one particular solution

$$
\begin{array}{r}
x^{\prime}, y^{\prime} \in \mathbb{Z} \text { to } \neq x \\
8 x^{\prime}+5 y^{\prime}=1
\end{array}
$$

(2) Find the general solution of the associated "homogeneous equation"

$$
8 x+5 y=0
$$

It turns out that step (2) is the easy part. Suppose we have a solution $x, y \in \mathbb{Z}$ to $4 * *$. Then we get

$$
\begin{aligned}
8 x+5 y & =0 \\
8 x & =-5 y,
\end{aligned}
$$

hence $8 \mid 5 y$ \& $5 / 8 x$.

Since 8\&5 are coprime, you will prove on HW4 Problern 2(a) That This implies

$$
8 \mid y \quad \& \quad 5 / x
$$

say $y=8 k$ \& $x=5 l$ for some $k, l \in \mathbb{Z}$. Substituting these into *** gives

$$
\begin{aligned}
& 8(5 l)+5(8 k)=0 \\
& 40 l+40 k=0 \\
& 40(l+k)=0
\end{aligned}
$$

Since $40 \neq 0$ this implies that $l+k=0$, hence $l=-R$. We conclude that the general solution of $* * \&$ is

$$
(x, y)=(-5 k, 8 k) \quad \forall k \in \mathbb{Z}
$$

[Note: There are infinitely many solutions and they are "parametrized" by \mathbb{Z},

Step (2) is done so we return to step (1).

Find any one particular solution to

$$
8 x^{\prime}+5 y^{\prime}=1
$$

If we can do this, then you will prove on HW 4 Problem 4 that the complete solution to (A* (and hence to (A)) is

$$
(x, y)=\left(x^{\prime}-5 k, y^{\prime}+8 k\right) \quad \forall k \in \mathbb{Z} \text {. }
$$

The general solution of $t *$ equals the general solution of the associated homogeneous equation $* * *$, shifted by any one particular solution of $* *$.].

Great. So can we find a particular solution $x^{\prime}, y^{\prime} \in \mathbb{Z}$?

There are two ways to proceed:
(i) Trial-and-Error.

In a small case like this you con probably just guess a solution. But in larger cases guessing is not practical.
(ii) Augment the Euclidean Algorithm so when we compute $\operatorname{gcd}(9, b)$ if also spits out a solution $x, y \in \mathbb{Z}$ to

$$
a x+b y=\operatorname{gcd}(a, b)
$$

This is called the "Extended Euclidean Algorithm". I'll teach if to you by example. The general idea is that we are looking at triples $x, y, z \in \mathbb{Z}$ such the rt $8 x+5 y=z$. There are two obvious such triples

$$
\begin{aligned}
& 8(1)+5(0)=8 \\
& 8(0)+5(1)=5
\end{aligned}
$$

Now we apply the Euclidean Algorithm to the triples:

$$
\begin{array}{rrr}
x & y & z \\
1 & 0 & 8 \\
0 & 1 & 5 \\
1 & -1 & 3 \\
-1 & 2 & 2 \\
2 & -3 & 1=\operatorname{gcal}(8,5)
\end{array}
$$

The last row tells us that

$$
8(2)+5(-3)=1
$$

We found one particular solution. So let

$$
\left(x^{\prime}, y^{\prime}\right)=(2,-3)
$$

Then the general solution of the linear Diophantine equation (*),

$$
24 x+15 y=3
$$

is given by

$$
(x, y)=(2-5 k,-3+8 k) \quad \forall k \in \mathbb{Z}
$$

In the x, y-plane these are the integer points on the line $y=(1-8 x) / 5$:

Remark: This is actually pretty useful.
In the land of $O z$ their coins only come in two denominations: $\$ a \& \& b$. If you need to pay for something that costs $\$ C$, how do you know if this is possible, and if so, how many of each coin to use?

If you don't think that's useful, note That the algorithm can be easily generalized to the case of many coins and many denominations.

Extended Euclidean Algorithm

Recall: Last time we solved the linear Diophantine equation

$$
* \quad 24 x+15 y=3
$$

Step 1: Reduce the equation by $\operatorname{gcd}(24,15)=3$ to get.

$$
8 x+5 y=1
$$

Step 2 i Since 8 \& 5 are coprime (i.e.) $\operatorname{gc\lambda }(8,5)=1)$, the general solution of the homogeneous equation

$$
8 x+5 y=0
$$

is $(x, y)=(-5 k, 8 k) \quad \forall k \in \mathbb{Z}$.
Step 3: Finally, we use the Extended Euclidean Algorithm
to find one particular solution to $* *$. In our case we found

$$
8(2)+5(-3)=1
$$

We conclude that the full solution of ** (and hence $*$) is

$$
\begin{aligned}
(x, y) & =(2-5 k,-3+8 k) \quad \forall k \in \mathbb{Z} \\
& =(2,-3)+k(-5,8) \quad \forall k \in \mathbb{Z}
\end{aligned}
$$

using vector notation.
You will prove on HW4 that this same process works in general.

Now let's discuss the Extended Euclidean Algorithm a kit more.

Consider $a, b \in \mathbb{Z}$, not $b \Delta$ th zero (so that $\operatorname{ged}(4, b)$ exists). We are interested in the set of integer triples (x, y, z) such that

$$
a x+b y=z
$$

Denote the set by

$$
V:=\{(x, y, z): a x+b y=z\}
$$

The Extended Euclidean Algorithm is loased on the following lemma.

* Lemma: Given two elements (x, y, z) and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ of V and an integer $\& \in \mathbb{Z}$, we have

$$
\begin{aligned}
(x, y, z) & -q\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \\
& =\left(x-q x^{\prime}, y-q y^{\prime}, z-q z^{\prime}\right) \in V
\end{aligned}
$$

[Jargon: In Linear algebra, this is called an "elementary row operation". It is the foundation of "Gaussian elimination".]

Proof: Since $(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in V$ we know that

$$
\begin{aligned}
& a x+b y=z, \text { and } \\
& a x^{\prime}+b y^{\prime}=z
\end{aligned}
$$

Then for all $q \in \mathbb{Z}$ we have

$$
\begin{aligned}
& a\left(x-q x^{\prime}\right)+b\left(y-q y^{\prime}\right) \\
& \quad=(a x+b y)-q\left(a x^{\prime}+b y^{\prime}\right) \\
& \left.\quad=z-q z^{\prime}\right)
\end{aligned}
$$

and hence $\left(x-q x^{\prime}, y-q y^{\prime}, z-q z^{\prime}\right) \in V$.

So what? We con combine this Lemma with the Euclidean Algorithm as follows.

* Extended Euclidean Algorithm

Consider $a, b \in \mathbb{2}$, not both zero, and define the set

$$
V=\{(x, y, z): \quad a x+b y=z\}
$$

There are two obvious elements of this set: $(1,0, a) \&(0,1, b)$.

Now recall the sequence of divisions we use in the Euclidean Algorithm:

$$
\begin{array}{ll}
a=q_{1} b+r_{1} \\
b=q_{2} r_{1}+r_{2} & 0 \leq r_{1}<|b| \\
r_{1}=q_{3} r_{2}+r_{3} & 0 \leq r_{2}<r_{1} \\
& 0 \leq r_{3}<r_{2}
\end{array}
$$

etc.
We con apply the "some" sequence of steps to the triples $(1,0, a) \&(0,1, b)$:

$$
\begin{array}{ll}
(1,0, & , 0 \\
(0,1) & \text { (1) } \\
\left(1,-q_{1}, r_{1}\right) & \text { (3) }=(1)-q_{1} \text { (2) } \\
\left(-q_{2}, 1+q_{1} q_{2}, r_{2}\right) & \text { (4) }=(2)-q_{2}(3) \\
\text { etc. }
\end{array}
$$

In the end we will find a triple

$$
(x, y, \operatorname{gcd}(a, b))
$$

Where x \& y are some integers. Since $(x, y, \operatorname{gcd}(a, b)) \in V$ by the lemma, we conclude that

$$
a x+b y=\operatorname{gcd}(a, k)
$$

Example: Find one particular solution $x, y \in Z$ to the equation

$$
385 x+84 y=7
$$

It might be hard to guess a solution to this one so we use the E.E.A,:

Consider the set

$$
V=\{(x, y, z): 385 x+84 y=z\} .
$$

Then we have

x	y	z	
1	0	385	(1)
$\left.\begin{array}{cccc}x & 84 & \text { (2) } \\ 0 & 1 & (3)=(1)-4(2) \\ 1 & -4 & 49 & (4)=(2)-1(3) \\ -1 & 5 & 35 & (5)=(3)-1(4) \\ 2 & -9 & 14 & (6)=(4)-2(5) \\ -5 & 23 & 7 & \text { (7) }=\text { (5) }-2(6) \\ 12 & -55 & 0 & \text { (4) }\end{array}\right)$			

From row (6) we conclude that

$$
385(-5)+84(23)=7
$$

And as a bonus, rows (6) \& (7) tell us that the complete saintion to the equation $385 x+84 y=7$ is

$$
(x, y)=(-5+12 k, 23-55 k) \quad \forall k \in \mathbb{Z} .
$$

Reason: Well, the lemma implies that this is a solution because

$$
\begin{aligned}
& (-5,23,7) \&(12,-55,0) \in V \\
& \Rightarrow(-5,23,7)+k(12,-55,0) \\
& =(-5+12 k, 23-55 k, 7) \in V
\end{aligned}
$$

for all $k \in \mathbb{Z}$.
The fact that this is the complete solution again follows from your work on HW4.

We have seen that the E.E.A. is useful for solving integer (i.e. "Diophantine") equations. Next time we will use it for more theoretical purposes.

