1. Poker Hands. A standard deck contains 52 cards. Half the cards are red and half are black. A "poker hand" consists of 5 cards chosen at random from the deck.
(a) How many different poker hands are there?
(b) How many poker hands contain all red cards?
(c) How many poker hands contain 1 red and 4 black cards? [Hint: Choose the red card first, then choose the black cards.]
2. Double Counting. In this problem you will give two proofs of the identity

$$
k\binom{n}{k}=n\binom{n-1}{k-1} .
$$

(a) Prove the identity using pure algebra. [Hint: n ! $=n \times(n-1)$!]
(b) In a certain classroom of n students we want to choose a committee of k students, one of which will be the president of the committee. Prove the identity by counting the possible choices in two different ways. [Hint: Will you choose the president before or after choosing the committee members?]
3. Trinomial Coefficients. Consider integers $i, j, k \geq 0$ such that $i+j+k=n$, and let N be the number of words that can be made with the letters

$$
\underbrace{a, a, \ldots, a}_{i \text { copies }}, \underbrace{b, b, \ldots,}_{j \text { copies }}, \underbrace{c, c, \ldots, c}_{k \text { copies }} .
$$

(a) Explain why $n!=N \times i!\times j!\times k!$.
(b) How many words can be made from the letters b, a, n, a, n, a ?
4. Falling Factorial. For any number z and for any integer $k \geq 0$ we define the "falling factorial" notation $(z)_{k}:=z(z-1)(z-2) \cdots(z-k+1)$. If $n \geq 0$ is an integer, show that

$$
\binom{n}{k}=\frac{(n)_{k}}{k!} .
$$

5. Newton's Binomial Theorem. Consider any integer $k \geq 0$. Based on Problem 4, Isaac Newton defined the notation

$$
\binom{z}{k}:=\frac{(z)_{k}}{k!}
$$

for any number z (not just positive whole numbers), and he showed that for any number x with $|x|<1$ the following infinite series is convergent:

$$
(1+x)^{z}=1+\binom{z}{1} x+\binom{z}{2} x^{2}+\binom{z}{3} x^{3}+\cdots .
$$

(a) For any integers $n, k \geq 1$ show that

$$
\binom{-n}{k}=(-1)^{k}\binom{n+k-1}{k} .
$$

(b) Use Newton's formula to obtain an infinite series expansion for $(1+x)^{-2}$.

