1. De Morgan's Laws.

- (a) Let $A, B \subseteq U$ be any subsets of the universal set. Use Venn diagrams to show that $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$.
- (b) Let P,Q be any logical statements. Use truth tables to show that

$$\neg (P \lor Q) = \neg P \land \neg Q \quad \text{and} \quad \neg (P \land Q) = \neg P \lor \neg Q.$$

(a) Here are the Venn diagrams:

(b) Observe that the 4th and 7th columns in each truth table are are equal:

P ($Q \mid$	$P \vee Q$	$\neg (P \lor Q)$	$\neg P$	$\neg Q$	$\neg P \wedge \neg Q$
T	T	T	F	F	F	F
T T	F	T	F	F	T	F
F 2	T	T	F	T	F	F
F .	F	F	T	T	T	T
P ($Q \mid$	$P \wedge Q$	$\neg (P \land Q)$	$\neg P$	$\neg Q$	$\neg P \vee \neg Q$
	$\left. \begin{array}{c} Q \\ T \end{array} \right $	$\frac{P \wedge Q}{T}$	$\frac{\neg (P \land Q)}{F}$	$\frac{\neg P}{F}$	$\neg Q$ F	$\frac{\neg P \lor \neg Q}{F}$
	\overline{T}	-	,		•	
$\begin{array}{c} T & T \\ T & T \end{array}$	\overline{T}	T	,		F	

2. The Contrapositive. Let *P* and *Q* be logical statements. We define the statement $P \Rightarrow Q$ (read as "*P* implies *Q*") by the formula

$$P \Rightarrow Q := (\neg P) \lor Q = (\text{NOT } P) \text{ OR } Q.$$

- (a) Draw the truth table for this function.
- (b) Use a truth table or another method to show that " $P \Rightarrow Q$ " is the same as " $\neg Q \Rightarrow \neg P$."
- (c) If R is another logical statement, use Problem 1 and part (b) to show that

$$"P \Rightarrow (Q \lor R)" = "(\neg Q \land \neg R) \Rightarrow \neg P."$$

(a)

P	Q	$\neg P$	$(\neg P) \lor Q$	$P \Rightarrow Q$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

(b) Since \lor is commutative we have

$$"\neg Q \Rightarrow \neg P" = "(\neg \neg Q) \lor (\neg P)" = "Q \lor (\neg P)" = "(\neg P) \lor Q" = "P \Rightarrow Q"$$

(c) By applying Problem 2(b) and Problem 1(b) we obtain

$$"P \Rightarrow (Q \lor R)" = "\neg (Q \lor R) \Rightarrow \neg P"$$
 2(b)

$$= "(\neg Q \land \neg R) \Rightarrow \neg P"$$
 1(b)

3. Application. We way that an integer $n \in \mathbb{Z}$ is odd when n = 2k + 1 for some $k \in \mathbb{Z}$. We that n is even when it is not odd. Consider any two integers $m, n \in \mathbb{Z}$ and use Problem 2(c) to prove the following statement:

"If mn is even then m is even or n is even."

[Hint: Let P = "mn is even," Q = "m is even," and R = "n is even."]

We are asked to prove that $P \Rightarrow (Q \lor R)$ is a true statement. By Problem 2(c), this statement is logically equivalent to $(\neg Q \land \neg R) \Rightarrow \neg P$, which in English says:

"If m and n are both odd then mn is odd."

In order to prove this equivalent statement, let us suppose that m and n are both odd. This means that m = 2k + 1 and $n = 2\ell + 1$ for some integers $k, \ell \in \mathbb{Z}$. But then we have

$$mn = (2k + 1)(2\ell + 1) = 4k\ell + 2k + 2\ell + 1 = 2(2k\ell + k + \ell) + 1 = 2(something) + 1,$$

and it follows that mn is odd. This completes the proof.

4. Counting Functions. Let S be a finite set with #S elements and let T be a finite set with #T elements.

- (a) Write a formula for the number of elements of $S \times T$, i.e., the number of ordered pairs (s,t) with $s \in S$ and $t \in T$.
- (b) Write a formula for the number of functions from S to T.
- (c) Use your answers from parts (a) and (b) to compute the number of Boolean functions with 2 inputs and 1 output. [Hint: By definition these are the functions from $\{T, F\} \times \{T, F\}$ to $\{T, F\}$.]

(a) Suppose that #S = m and #T, and let us denote the elements as

$$S = \{s_1, s_2, \dots, s_n\}$$
 and $T = \{t_1, t_2, \dots, t_n\}.$

Then the elements of the set $S \times T$ can be arranged in a rectangle as follows:

	t_1	t_2	•••	t_n
s_1	(s_1, t_1)	(s_1, t_2)		(s_1, t_n)
s_2	(s_2, t_1)	(s_2, t_2)		(s_2, t_n)
÷	:	:	·	:
s_m	(s_m, t_1)	(s_m, t_2)		(s_m, t_n)

By definition the number of cells in this rectangle is mn. Hence

 $#(S \times T) = #(cells in rectangle) = mn = #S \times #T.$

(b) To define a function $f: S \to T$ we need to specify an element $f(s) \in T$ for each element $s \in S$. Observe that for each $s \in S$ there are exactly #T possible choices for $f(s) \in T$. Thus the total number of choices is

$$\underbrace{\#T \times \#T \times \dots \times \#T}_{\#S \text{ times}} = (\#T)^{(\#S)}.$$

(c) According to parts (a) and (b), the number of functions from $\{T, F\} \times \{T, F\}$ to $\{T, F\}$ is $\#\{T, F\}^{(\#(\{T, F\} \times \{T, F\}))} = \#\{T, F\}^{(\#\{T, F\} \times \#\{T, F\})} = 2^{(2 \times 2)} = 2^4 = 16.$

5. Counting Subsets.

- (a) Explicitly write down all of the subsets of $\{1, 2, 3\}$.
- (b) Explicitly write down all of the functions $\{1, 2, 3\} \rightarrow \{T, F\}$.
- (c) If S is any set, let Sub(S) be the set of subsets of S and let $Fun(S, \{T, F\})$ be the set of functions from S to $\{T, F\}$. Find a 1 : 1 correspondence between these two sets:

 $\operatorname{Sub}(S) \leftrightarrow \operatorname{Fun}(S, \{T, F\}).$

- (d) If S is a finite set with #S elements, use Problem 4(b) to conclude that S has $2^{\#S}$ different subsets.
- (a) Here they are. Note that there are 8 subsets. I wonder why.

$$\{1, 2, 3\}$$

 $\{1, 2\}$ $\{1, 3\}$ $\{2, 3\}$
 $\{1\}$ $\{2\}$ $\{3\}$
 \emptyset

(b) Here they are. There are $\#\{T, F\}^{\#\{1,2,3\}} = 2^3 = 8$ of them, as expected.

(c) For any subset $A \subseteq S$ we will define a function $f_A : S \to \{T, F\}$ as follows:

$$f_A(x) := \begin{cases} T & \text{if } x \in A, \\ F & \text{if } x \notin A. \end{cases}$$

For example, compare the pictures in parts (a) and (b). Note that $A \mapsto f_A$ defines a function from $\operatorname{Sub}(S)$ to $\operatorname{Fun}(S, \{T, F\})$. Is this function invertible? Yes. For any function $f : S \to \{T, F\}$ we define a set A by $\{x \in S : f(x) = T\}$ and observe that $f_A = f$.

(d) Since the function in part (c) is invertible (i.e., a bijection) we conclude that

$$#\operatorname{Sub}(S) = #\operatorname{Fun}(S, \{T, F\}),$$

and from Problem 4(b) we have

$$\#$$
Fun $(S, \{T, F\}) = \#\{T, F\}^{\#S} = 2^{\#S}$

Putting these equations together gives

$$\#\mathrm{Sub}(S) = 2^{\#S}.$$