1. De Morgan's Laws.

(a) Let $A, B \subseteq U$ be any subsets of the universal set. Use Venn diagrams to show that

$$
(A \cup B)^{c}=A^{c} \cap B^{c} \quad \text { and } \quad(A \cap B)^{c}=A^{c} \cup B^{c} .
$$

(b) Let P, Q be any logical statements. Use truth tables to show that

$$
\neg(P \vee Q)=\neg P \wedge \neg Q \quad \text { and } \quad \neg(P \wedge Q)=\neg P \vee \neg Q
$$

(a) Here are the Venn diagrams:

(b) Observe that the 4th and 7th columns in each truth table are are equal:

P	Q	$P \vee Q$	$\neg(P \vee Q)$	$\neg P$	$\neg Q$	$\neg P \wedge \neg Q$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

P	Q	$P \wedge Q$	$\neg(P \wedge Q)$	$\neg P$	$\neg Q$	$\neg P \vee \neg Q$
T	T	T	F	F	F	F
T	F	F	T	F	T	T
F	T	F	T	T	F	T
F	F	F	T	T	T	T

2. The Contrapositive. Let P and Q be logical statements. We define the statement $P \Rightarrow Q$ (read as " P implies Q ") by the formula

$$
P \Rightarrow Q:=(\neg P) \vee Q=(\text { NOT } P) \text { OR } Q .
$$

(a) Draw the truth table for this function.
(b) Use a truth table or another method to show that " $P \Rightarrow Q$ " is the same as " $\neg Q \Rightarrow \neg P$."
(c) If R is another logical statment, use Problem 1 and part (b) to show that

$$
" P \Rightarrow(Q \vee R) "="(\neg Q \wedge \neg R) \Rightarrow \neg P . "
$$

(a)

P	Q	$\neg P$	$(\neg P) \vee Q$	$P \Rightarrow Q$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

(b) Since \vee is commutative we have

$$
" \neg Q \Rightarrow \neg P "="(\neg \neg Q) \vee(\neg P) "=" Q \vee(\neg P) "="(\neg P) \vee Q "=" P \Rightarrow Q "
$$

(c) By applying Problem 2(b) and Problem 1(b) we obtain

$$
\begin{align*}
" P \Rightarrow(Q \vee R) & =" \neg(Q \vee R) \Rightarrow \neg P " \tag{~b}\\
& ="(\neg Q \wedge \neg R) \Rightarrow \neg P " \tag{b}
\end{align*}
$$

3. Application. We way that an integer $n \in \mathbb{Z}$ is odd when $n=2 k+1$ for some $k \in \mathbb{Z}$. We that n is even when it is not odd. Consider any two integers $m, n \in \mathbb{Z}$ and use Problem 2(c) to prove the following statement:
"If $m n$ is even then m is even or n is even."
[Hint: Let $P=" m n$ is even," $Q=" m$ is even," and $R=" n$ is even."]
We are asked to prove that $P \Rightarrow(Q \vee R)$ is a true statement. By Problem 2(c), this statement is logically equivalent to $(\neg Q \wedge \neg R) \Rightarrow \neg P$, which in English says:
"If m and n are both odd then $m n$ is odd."
In order to prove this equivalent statement, let us suppose that m and n are both odd. This means that $m=2 k+1$ and $n=2 \ell+1$ for some integers $k, \ell \in \mathbb{Z}$. But then we have

$$
\begin{aligned}
m n & =(2 k+1)(2 \ell+1) \\
& =4 k \ell+2 k+2 \ell+1 \\
& =2(2 k \ell+k+\ell)+1 \\
& =2(\text { something })+1,
\end{aligned}
$$

and it follows that $m n$ is odd. This completes the proof.
4. Counting Functions. Let S be a finite set with $\# S$ elements and let T be a finite set with $\# T$ elements.
(a) Write a formula for the number of elements of $S \times T$, i.e., the number of ordered pairs (s, t) with $s \in S$ and $t \in T$.
(b) Write a formula for the number of functions from S to T.
(c) Use your answers from parts (a) and (b) to compute the number of Boolean functions with 2 inputs and 1 output. [Hint: By definition these are the functions from $\{T, F\} \times$ $\{T, F\}$ to $\{T, F\}$.]
(a) Suppose that $\# S=m$ and $\# T$, and let us denote the elements as

$$
S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \quad \text { and } \quad T=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} .
$$

Then the elements of the set $S \times T$ can be arranged in a rectangle as follows:

	t_{1}		t_{2}	\cdots
t_{n}				
s_{1}	$\left(s_{1}, t_{1}\right)$	$\left(s_{1}, t_{2}\right)$	\cdots	$\left(s_{1}, t_{n}\right)$
s_{2}	$\left(s_{2}, t_{1}\right)$	$\left(s_{2}, t_{2}\right)$	\cdots	$\left(s_{2}, t_{n}\right)$
	\vdots	\vdots	\ddots	\vdots
s_{m}	$\left(s_{m}, t_{1}\right)$	$\left(s_{m}, t_{2}\right)$	\cdots	$\left(s_{m}, t_{n}\right)$

By definition the number of cells in this rectangle is $m n$. Hence

$$
\#(S \times T)=\#(\text { cells in rectangle })=m n=\# S \times \# T
$$

(b) To define a function $f: S \rightarrow T$ we need to specify an element $f(s) \in T$ for each element $s \in S$. Observe that for each $s \in S$ there are exactly $\# T$ possible choices for $f(s) \in T$. Thus the total number of choices is

$$
\underbrace{\# T \times \# T \times \cdots \times \# T}_{\# S \text { times }}=(\# T)^{(\# S)} .
$$

(c) According to parts (a) and (b), the number of functions from $\{T, F\} \times\{T, F\}$ to $\{T, F\}$ is

$$
\#\{T, F\}^{(\#(\{T, F\} \times\{T, F\}))}=\#\{T, F\}^{(\#\{T, F\} \times \#\{T, F\})}=2^{(2 \times 2)}=2^{4}=16 .
$$

[Remark: How many of these 16 functions have we seen in this course?]

5. Counting Subsets.

(a) Explicitly write down all of the subsets of $\{1,2,3\}$.
(b) Explicitly write down all of the functions $\{1,2,3\} \rightarrow\{T, F\}$.
(c) If S is any set, let $\operatorname{Sub}(S)$ be the set of subsets of S and let $\operatorname{Fun}(S,\{T, F\})$ be the set of functions from S to $\{T, F\}$. Find a 1:1 correspondence between these two sets:

$$
\operatorname{Sub}(S) \leftrightarrow \operatorname{Fun}(S,\{T, F\}) .
$$

(d) If S is a finite set with $\# S$ elements, use Problem 4(b) to conclude that S has $2^{\# S}$ different subsets.
(a) Here they are. Note that there are 8 subsets. I wonder why.

$$
\{1,2,3\}
$$

\emptyset
(b) Here they are. There are $\#\{T, F\}^{\#\{1,2,3\}}=2^{3}=8$ of them, as expected.

(c) For any subset $A \subseteq S$ we will define a function $f_{A}: S \rightarrow\{T, F\}$ as follows:

$$
f_{A}(x):=\left\{\begin{array}{lc}
T & \text { if } x \in A, \\
F & \text { if } x \notin A .
\end{array}\right.
$$

For example, compare the pictures in parts (a) and (b). Note that $A \mapsto f_{A}$ defines a function from $\operatorname{Sub}(S)$ to $\operatorname{Fun}(S,\{T, F\})$. Is this function invertible? Yes. For any function $f: S \rightarrow$ $\{T, F\}$ we define a set A by $\{x \in S: f(x)=T\}$ and observe that $f_{A}=f$.
(d) Since the function in part (c) is invertible (i.e., a bijection) we conclude that

$$
\# \operatorname{Sub}(S)=\# \operatorname{Fun}(S,\{T, F\})
$$

and from Problem 4(b) we have

$$
\# \operatorname{Fun}(S,\{T, F\})=\#\{T, F\}^{\# S}=2^{\# S}
$$

Putting these equations together gives

$$
\# \operatorname{Sub}(S)=2^{\# S} .
$$

