For any positive integers p and n, we let $S_{p}(n)$ denote the sum of the first n " p-th powers:"

$$
S_{p}(n):=\sum_{i=1}^{n} i^{p}=1^{p}+2^{p}+3^{p}+\cdots+n^{p}
$$

1. In class I gave a proof that

$$
\begin{equation*}
S_{1}(n)=\frac{n(n+1)}{2} \tag{*}
\end{equation*}
$$

Now you will give a different proof.
(a) Show that equation $(*)$ is true when $n=1$.
(b) Let k be an arbitrary positive integer and assume that equation $(*)$ is true when $n=k$. In this case show that $(*)$ must also be true when $n=k+1$. [Hint: Use the fact that $S_{1}(k+1)=S_{1}(k)+(k+1)$.]
(a) Base Case: When $n=1$ we observe that $1=1(2) / 2$ is a true statement.
(b) Induction Step: Consider any integer $k \geq 1$ and assume for induction that the statement $(*)$ is true when $n=k$. In other words, assume that $S_{1}(k)=k(k+1) / 2$ is a true statement. In this (hypothetical) case, we must have

$$
\begin{aligned}
S_{1}(k+1) & =1+2+\cdots+(k+1) \\
& =(1+2+\cdots+k)+(k+1) \\
& =S_{1}(k)+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1) \\
& =(k+1)\left[\frac{k}{2}+1\right] \\
& =(k+1) \frac{(k+2)}{2} \\
& =\frac{(k+1)[(k+1)+1]}{2}
\end{aligned}
$$

(assumption)

Hence the statement $(*)$ is also true when $n=k+1$.
2. In class I gave a proof that

$$
\begin{equation*}
S_{2}(n)=\frac{n(n+1)(2 n+1)}{6} \tag{**}
\end{equation*}
$$

Now you will give a different proof.
(a) Show that equation $(* *)$ is true when $n=1$.
(b) Let k be an arbitrary positive integer and assume that equation $(* *)$ is true when $n=k$. In this case show that $(* *)$ must also be true when $n=k+1$. [Hint: Use the fact that $S_{2}(k+1)=S_{2}(k)+(k+1)^{2}$.]
(a) Base Case: When $n=1$ we observe that $1^{2}=1(2)(3) / 6$ is a true statement.
(b) Induction Step: Consider any integer $k \geq 1$ and assume for induction that the statement $(* *)$ is true when $n=k$. In other words, assume that $S_{2}(k)=k(k+1)(2 k+1) / 2$ is a true statement. In this (hypothetical) case, we must have

$$
\begin{align*}
S_{2}(k+1) & =1^{2}+2^{2}+\cdots+(k+1)^{2} \\
& =\left(1^{2}+2^{2}+\cdots+k^{2}\right)+(k+1)^{2} \\
& =S_{2}(k)+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \tag{assumption}\\
& =(k+1)\left[\frac{k(2 k+1)}{6}+(k+1)\right] \\
& =(k+1)\left[\frac{2 k^{2}+k}{6}+\frac{6 k+6}{6}\right] \\
& =(k+1) \frac{\left(2 k^{2}+7 k+6\right)}{6} \\
& =(k+1) \frac{(k+2)(2 k+3)}{6} \\
& =\frac{(k+1) \cdot[(k+1)+1] \cdot[2(k+1)+1]}{6} .
\end{align*}
$$

Hence the statement $(* *)$ is also true when $n=k+1$.
3. (Steiner's Problem) Suppose that we have a round pizza and let L_{n} be the maximum number of pieces we can obtain from n straight cuts. We proved in class that

$$
L_{n}=1+(1+2+3+\cdots+n)=1+\frac{n(n+1)}{2}=\frac{n^{2}+n+2}{2} .
$$

Now suppose we have a round ball of cheese and let P_{n} be the maximum number of pieces we can obtain from n flat cuts. You may assume without proof that we have

$$
P_{n+1}=P_{n}+L_{n} \quad \text { for all } n \geq 0
$$

(a) Use this recurrence to show that for all $n \geq 0$ we have

$$
P_{n+1}=1+L_{0}+L_{1}+L_{2}+\cdots L_{n}=1+\sum_{k=0}^{n} L_{k}=1+\sum_{k=0}^{n}\left(\frac{k^{2}+k+2}{2}\right) .
$$

(b) Simplify the expression in part (a) to show that

$$
P_{n+1}=\frac{(n+2)\left(n^{2}+n+6\right)}{6},
$$

and hence

$$
P_{n}=\frac{(n+1)\left(n^{2}-n+6\right)}{6} .
$$

[Hint: Use the results from Problems 1 and 2.]

There's not much to do for part (a). For part (b) we have

$$
\begin{aligned}
P_{n+1} & =1+\sum_{k=0}^{n}\left(\frac{k^{2}+k+2}{2}\right) \\
& =1+\frac{1}{2}\left(\sum_{k=0}^{n} k^{2}\right)+\frac{1}{2}\left(\sum_{k=0}^{n} k\right)+\left(\sum_{k=0}^{n} 1\right) \\
& =1+\frac{1}{2}\left(\sum_{k=1}^{n} k^{2}\right)+\frac{1}{2}\left(\sum_{k=1}^{n} k\right)+\left(\sum_{k=0}^{n} 1\right) \\
& =1+\frac{1}{2}\left(\frac{n(n+1)(2 n+1)}{6}\right)+\frac{1}{2}\left(\frac{n(n+1)}{2}\right)+(n+1) \\
& =\frac{12}{12}+\frac{2 n^{3}+3 n^{2}+n}{12}+\frac{3 n^{3}+3 n}{12}+\frac{12 n+12}{12} \\
& =\frac{2 n^{3}+6 n^{2}+16 n+24}{12} \\
& =\frac{n^{3}+3 n^{2}+8 n+12}{6} \\
& =\frac{(n+2)\left(n^{2}+n+6\right)}{6} .
\end{aligned}
$$

[Remark: I don't really care about the factorization in the last step. My computer did it for me.] Then by substituting $n \rightarrow(n-1)$ we conclude that

$$
P_{n}=\frac{[(n-1)+2] \cdot\left[(n-1)^{2}+(n-1)+6\right]}{6}=\frac{(n+1)\left(n^{2}-n+6\right)}{6}
$$

For example, if we cut a round cheese 5 times, the maximum number of pieces we can get is

$$
P_{5}=\frac{6 \cdot(25-5+6)}{6}=26 .
$$

That would be very hard to figure out with pictures.
[Remark: Jakob Steiner solved this problem in 1826. Later in the 1840s, Ludwig Schläfli suggested to rewrite Steiner's formula in terms of binomial coefficients ${ }^{1}$

$$
P_{n}=\frac{n(n-1)(n-2)}{6}+\frac{n(n-1)}{2}+n+1=\binom{n}{3}+\binom{n}{2}+\binom{n}{1}+\binom{n}{0} .
$$

At the same time, Schläfli showed that the maximum number of pieces of a " d-dimensional hypercheese" that can be obtained from n flat cuts is

$$
\binom{n}{d}+\binom{n}{d-1}+\cdots+\binom{n}{2}+\binom{n}{1}+\binom{n}{0},
$$

whatever that means.]

[^0]
[^0]: ${ }^{1}$ We will talk about these later.

