For any positive integers $p$ and $n$, we let $S_{p}(n)$ denote the sum of the first $n$ " $p$-th powers:"

$$
S_{p}(n):=\sum_{i=1}^{n} i^{p}=1^{p}+2^{p}+3^{p}+\cdots+n^{p}
$$

1. In class I gave a proof that

$$
\begin{equation*}
S_{1}(n)=\frac{n(n+1)}{2} . \tag{*}
\end{equation*}
$$

Now you will give a different proof.
(a) Show that equation $(*)$ is true when $n=1$.
(b) Let $k$ be an arbitrary positive integer and assume that equation (*) is true when $n=k$. In this case show that (*) must also be true when $n=k+1$. [Hint: Use the fact that $S_{1}(k+1)=S_{1}(k)+(k+1)$.]
2. In class I gave a proof that

$$
\begin{equation*}
S_{2}(n)=\frac{n(n+1)(2 n+1)}{6} \tag{**}
\end{equation*}
$$

Now you will give a different proof.
(a) Show that equation $(* *)$ is true when $n=1$.
(b) Let $k$ be an arbitrary positive integer and assume that equation ( $* *$ ) is true when $n=k$. In this case show that ( $* *$ ) must also be true when $n=k+1$. [Hint: Use the fact that $S_{2}(k+1)=S_{2}(k)+(k+1)^{2}$.]
3. (Steiner's Problem) Suppose that we have a round pizza and let $L_{n}$ be the maximum number of pieces we can obtain from $n$ straight cuts. We proved in class that

$$
L_{n}=1+(1+2+3+\cdots+n)=1+\frac{n(n+1)}{2}=\frac{n^{2}+n+2}{2} .
$$

Now suppose we have a round ball of cheese and let $P_{n}$ be the maximum number of pieces we can obtain from $n$ flat cuts. You may assume without proof that we have

$$
P_{n+1}=P_{n}+L_{n} \quad \text { for all } n \geq 0
$$

(a) Use this recurrence to show that for all $n \geq 0$ we have

$$
P_{n+1}=1+L_{0}+L_{1}+L_{2}+\cdots L_{n}=1+\sum_{k=0}^{n} L_{k}=1+\sum_{k=0}^{n}\left(\frac{k^{2}+k+2}{2}\right) .
$$

(b) Simplify the expression in part (a) to show that

$$
P_{n+1}=\frac{(n+2)\left(n^{2}+n+6\right)}{6}
$$

and hence

$$
P_{n}=\frac{(n+1)\left(n^{2}-n+6\right)}{6}
$$

[Hint: Use the results from Problems 1 and 2.]

