
Math 309 Summer 2014
Final Exam Drew Armstrong

There are 5 problems, each with 3 parts. Each part is worth 2 points, for a total of 30
points. There is an optional bonus problem at the end. The value of the bonus problem is
intangible.

1. Boolean Algebra.

(a) Draw the truth table for P ⇒ Q.

Here is the truth table. For fun, we also observe that P ⇒ Q = (¬P ) ∨Q.

P Q ¬P (¬P ) ∨Q P ⇒ Q
T T F T T
T F F F F
F T T T T
F F T T T

(b) Prove that (P ⇒ Q) = (¬Q⇒ ¬P ) using a truth table.

Observe that the final columns in both tables are the same.

P Q ¬Q ¬P ¬Q⇒ ¬P
T T F F T
T F T F F
F T F T T
F F T T T

Alternatively, here’s an abstract-algebraic proof:

(¬Q⇒ ¬P ) = ((¬¬Q) ∨ ¬P ) = (Q ∨ ¬P ) = (¬P ∨Q) = (P ⇒ Q).

(c) Express the statement P ⇔ Q using only the boolean operations ∨,∧,¬ .

Recall that P ⇔ Q means (P ⇒ Q) ∧ (Q ⇒ P ). Therefore from the observation in
part (a) we can write

(P ⇔ Q) = (P ⇒ Q) ∧ (Q⇒ P ) = (¬P ∨Q) ∧ (¬Q ∨ P ).

Alternatively, we could first draw the truth table:

P Q P ⇔ Q
T T T
T F F
F T F
F F T

Since this function has T ’s in the P ∧ Q row and the ¬P ∧ ¬Q row, the disjunctive
normal form is

(P ⇔ Q) = (P ∧Q) ∨ (¬P ∧ ¬Q).



2. Induction. Your goal in this problem is to prove the following identity by induction.

1 · 1! + 2 · 2! + 3 · 3! + · · ·+ n · n! = (n + 1)!− 1.

(a) State exactly what you want to prove. Make sure to define P (n).

For all integers n ≥ 1 we define the statement

P (n) = “1 · 1! + 2 · 2! + · · ·n · n! = (n + 1)!− 1.”

We will use induction to prove that P (n) is true for all n ≥ 1.

(b) State and prove the base case.

We observe that the statement P (1) is true:

P (1) = “1 · 1! = (1 + 1)!− 1” = “1 = 2− 1” = T.

(c) State the prove the induction step.

Now consider an arbitrary integer k ≥ 1 and let us assume for induction that P (k) is
true. In other words, let us assume that

1 · 1! + 2 · 2! + · · ·+ k · k! = (k + 1)!− 1.

But then we have

1 · 1! + 2 · 2! + · · ·+ (k + 1) · (k + 1)!

= [1 · 1! + 2 · 2! + · · ·+ k · k!] + (k + 1) · (k + 1)!

= [(k + 1)!− 1] + +(k + 1) · (k + 1)! induction

= [(k + 1)! + (k + 1) · (k + 1)!]− 1

= [1 + (k + 1)] · (k + 1)!− 1

= (k + 2) · (k + 1)!− 1

= (k + 2)!− 1,

which means that P (k + 1) is also true.

[Remark: Where did I come up with this identity? Consider the collection of all words that
can be made with the symbols a1, a2, . . . , an+1. We will say the the symbol ai is “happy” if
it is placed in the ith position from the left. Note that every word except a1a2 · · · an+1 has at
least one unhappy symbol. Therefore the number of words with at least one unhappy symbol
is (n+1)!−1. On the other hand, let us consider the collection of words in which the leftmost
unhappy symbol occurs in the kth position from the right. One can argue that there are
(k − 1) · (k − 1)! such words. Now sum over k.]



3. Binomial Theorem.

(a) Accurately state the Binomial Theorem.

Fix a non-negative integer n ≥ 0. Then for all numbers x and y we have
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)
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(b) Prove that a set with n elements has an equal number of “even subsets” (subsets
with an even number of elements) and “odd subsets” (subsets with an odd number of
elements). [Hint: Just plug something in.]

Since the binomial theorem is true for all numbers x and y, we may substitute x = −1
and y = 1 to obtain
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(
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is the number of subsets with size k, the last equation tells us that the number

of odd-sized subsets equals the number of even-sized subsets.

(c) How many subsets of {1, 2, 3, 4, 5, 6} have an even number of elements?

The total number of subsets of {1, 2, 3, 4, 5, 6} is

2#{1,2,3,4,5,6} = 26 = 64.

Now let E and O be the numbers of even and odd subsets, so that E + O = 64. But
we know from part (b) that E = O, so that

E + O = 64

E + E = 64

2E = 64

E = 32.

[Remark: In general, the number of even subsets of {1, 2 . . . , n} is 2n−1.]

4. Probability. Consider a biased coin with P (“heads”) = 1/3.

(a) If you flip the coin n times. What is the probability that you get “heads” exactly k
times?

The probability of getting heads exactly k times in n flips of a coin is(
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(b) If you flip the coin 5 times, what is the probability that you get “heads” an even
number of times?

In this case we have n = 5. To compute the probability of an even number of heads,
we sum the probabilities from (a) over all even values of k:(
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(c) If you flip the coin 111 times, how many times do you expect to get “heads”?

Consider a general coin with P (“heads”) = p and P (“tails”) = 1 − p. If we flip this
coin n times then on average we will expect to get heads pn times.

Since our coin has p = 1/3, if we flip the coin n = 111 times then on average we expect
to see heads

np = 111 · 1/3 = 37 times.

5. Integers.

(a) Accurately state the Division Theorem for integers. [Hint: For all a, b ∈ Z with b 6= 0
. . . ]

For all integers a, b ∈ Z with b 6= 0, there exist unique integers q, r ∈ Z satisfying the
following two properties: {

a = qb + r,

0 ≤ r < |b|.

(b) Accurately state the definition of an “even” integer.

We say an integer is even if it is “divisible by 2.” In other words:

“n is even” = “2|n” = “∃k ∈ Z, 2k = n.”

(c) Consider an integer n ∈ Z. Prove that if n2 is even then n is even.

We wish to prove that 2|n2 implies 2|n. In order to do this we will instead prove the
(equivalent) contrapositive statement that 2 - n implies 2 - n2. We will also use the
fact (proved from the division theorem) that every non-even (i.e., odd) number has the
form 2k + 1 for some k ∈ Z.

So let us suppose that n ∈ Z is odd; say n = 2k + 1 for some k ∈ Z. It follows that

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 = 2 · (some integer) + 1

is also odd. �



6. Bonus. Give a counting proof of the following identity:

k
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)
.

Proof: Consider integers 0 ≤ k ≤ n. From a bag of n unlabeled apples we will choose k apples
to receive stickers. One of these k apples will receive two stickers and the other k − 1 will
receive one sticker each. We will count the possibilities in two ways.

On the one hand, we can choose the k stickered apples in
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On the other hand, we could first choose the two-stickered apple. There are n =
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do this. Then we could choose k − 1 apples from the remaining n − 1 apples to receive one
sticker each. There are
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Since these two formulas count the same things, they must be equal.
�


