There are 5 problems, each with 3 parts. Each part is worth 2 points, for a total of 30 points. There is an optional bonus problem at the end. The value of the bonus problem is intangible.

1. Boolean Algebra.

(a) Draw the truth table for $P \Rightarrow Q$.

Here is the truth table. For fun, we also observe that $P \Rightarrow Q=(\neg P) \vee Q$.

P	Q	$\neg P$	$(\neg P) \vee Q$	$P \Rightarrow Q$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

(b) Prove that $(P \Rightarrow Q)=(\neg Q \Rightarrow \neg P)$ using a truth table.

Observe that the final columns in both tables are the same.

P	Q	$\neg Q$	$\neg P$	$\neg Q \Rightarrow \neg P$
T	T	F	F	T
T	F	T	F	F
F	T	F	T	T
F	F	T	T	T

Alternatively, here's an abstract-algebraic proof:

$$
(\neg Q \Rightarrow \neg P)=((\neg \neg Q) \vee \neg P)=(Q \vee \neg P)=(\neg P \vee Q)=(P \Rightarrow Q)
$$

(c) Express the statement $P \Leftrightarrow Q$ using only the boolean operations \vee, \wedge, \neg.

Recall that $P \Leftrightarrow Q$ means $(P \Rightarrow Q) \wedge(Q \Rightarrow P)$. Therefore from the observation in part (a) we can write

$$
(P \Leftrightarrow Q)=(P \Rightarrow Q) \wedge(Q \Rightarrow P)=(\neg P \vee Q) \wedge(\neg Q \vee P)
$$

Alternatively, we could first draw the truth table:

P	Q	$P \Leftrightarrow Q$
T	T	T
T	F	F
F	T	F
F	F	T

Since this function has T 's in the $P \wedge Q$ row and the $\neg P \wedge \neg Q$ row, the disjunctive normal form is

$$
(P \Leftrightarrow Q)=(P \wedge Q) \vee(\neg P \wedge \neg Q)
$$

2. Induction. Your goal in this problem is to prove the following identity by induction.

$$
1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\cdots+n \cdot n!=(n+1)!-1
$$

(a) State exactly what you want to prove. Make sure to define $P(n)$.

For all integers $n \geq 1$ we define the statement

$$
P(n)=" 1 \cdot 1!+2 \cdot 2!+\cdots n \cdot n!=(n+1)!-1 . "
$$

We will use induction to prove that $P(n)$ is true for all $n \geq 1$.
(b) State and prove the base case.

We observe that the statement $P(1)$ is true:

$$
P(1)=" 1 \cdot 1!=(1+1)!-1 "=" 1=2-1 "=T .
$$

(c) State the prove the induction step.

Now consider an arbitrary integer $k \geq 1$ and let us assume for induction that $P(k)$ is true. In other words, let us assume that

$$
1 \cdot 1!+2 \cdot 2!+\cdots+k \cdot k!=(k+1)!-1
$$

But then we have

$$
\begin{aligned}
& 1 \cdot 1!+2 \cdot 2!+\cdots+(k+1) \cdot(k+1)! \\
& =[1 \cdot 1!+2 \cdot 2!+\cdots+k \cdot k!]+(k+1) \cdot(k+1)! \\
& =[(k+1)!-1]++(k+1) \cdot(k+1)! \\
& =[(k+1)!+(k+1) \cdot(k+1)!]-1 \\
& =[1+(k+1)] \cdot(k+1)!-1 \\
& =(k+2) \cdot(k+1)!-1 \\
& =(k+2)!-1,
\end{aligned}
$$

which means that $P(k+1)$ is also true.
[Remark: Where did I come up with this identity? Consider the collection of all words that can be made with the symbols $a_{1}, a_{2}, \ldots, a_{n+1}$. We will say the the symbol a_{i} is "happy" if it is placed in the i th position from the left. Note that every word except $a_{1} a_{2} \cdots a_{n+1}$ has at least one unhappy symbol. Therefore the number of words with at least one unhappy symbol is $(n+1)!-1$. On the other hand, let us consider the collection of words in which the leftmost unhappy symbol occurs in the k th position from the right. One can argue that there are $(k-1) \cdot(k-1)$! such words. Now sum over k.]

3. Binomial Theorem.

(a) Accurately state the Binomial Theorem.

Fix a non-negative integer $n \geq 0$. Then for all numbers x and y we have

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} x^{k} y^{n-k}
$$

(b) Prove that a set with n elements has an equal number of "even subsets" (subsets with an even number of elements) and "odd subsets" (subsets with an odd number of elements). [Hint: Just plug something in.]

Since the binomial theorem is true for all numbers x and y, we may substitute $x=-1$ and $y=1$ to obtain

$$
\begin{aligned}
(-1+1)^{n} & =\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+\binom{n}{n}(-1)^{n} \\
0 & =\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+\binom{n}{n}(-1)^{n} \\
\binom{n}{1}+\binom{n}{3}+\cdots & =\binom{n}{0}+\binom{n}{2}+\cdots
\end{aligned}
$$

Since $\binom{n}{k}$ is the number of subsets with size k, the last equation tells us that the number of odd-sized subsets equals the number of even-sized subsets.
(c) How many subsets of $\{1,2,3,4,5,6\}$ have an even number of elements?

The total number of subsets of $\{1,2,3,4,5,6\}$ is

$$
2^{\#\{1,2,3,4,5,6\}}=2^{6}=64 .
$$

Now let E and O be the numbers of even and odd subsets, so that $E+O=64$. But we know from part (b) that $E=O$, so that

$$
\begin{aligned}
E+O & =64 \\
E+E & =64 \\
2 E & =64 \\
E & =32
\end{aligned}
$$

[Remark: In general, the number of even subsets of $\{1,2 \ldots, n\}$ is 2^{n-1}.]
4. Probability. Consider a biased coin with P ("heads" $)=1 / 3$.
(a) If you flip the coin n times. What is the probability that you get "heads" exactly k times?

The probability of getting heads exactly k times in n flips of a coin is

$$
\binom{n}{k} P\left(\text { "heads") }{ }^{k} P(\text { "tails" })^{n-k}=\binom{n}{k}\left(\frac{1}{3}\right)^{k}\left(\frac{2}{3}\right)^{n-k}=\binom{n}{k} \frac{2^{n-k}}{3^{n}}\right.
$$

(b) If you flip the coin 5 times, what is the probability that you get "heads" an even number of times?

In this case we have $n=5$. To compute the probability of an even number of heads, we sum the probabilities from (a) over all even values of k :

$$
\begin{aligned}
\binom{5}{0} \frac{2^{5-0}}{3^{5}}+\binom{5}{2} \frac{2^{5-2}}{3^{5}}+\binom{5}{4} \frac{2^{5-4}}{3^{5}} & =\binom{5}{0} \frac{32}{243}+\binom{5}{2} \frac{8}{243}+\binom{5}{4} \frac{2}{243} \\
& =1 \cdot \frac{32}{243}+10 \cdot \frac{8}{243}+5 \cdot \frac{2}{243} \\
& =\frac{122}{243}=50.2 \%
\end{aligned}
$$

(c) If you flip the coin 111 times, how many times do you expect to get "heads"?

Consider a general coin with $P($ "heads" $)=p$ and $P($ "tails" $)=1-p$. If we flip this coin n times then on average we will expect to get heads $p n$ times.

Since our coin has $p=1 / 3$, if we flip the coin $n=111$ times then on average we expect to see heads

$$
n p=111 \cdot 1 / 3=37 \text { times }
$$

5. Integers.

(a) Accurately state the Division Theorem for integers. [Hint: For all $a, b \in \mathbb{Z}$ with $b \neq 0$...]

For all integers $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist unique integers $q, r \in \mathbb{Z}$ satisfying the following two properties:

$$
\left\{\begin{array}{l}
a=q b+r \\
0 \leq r<|b|
\end{array}\right.
$$

(b) Accurately state the definition of an "even" integer.

We say an integer is even if it is "divisible by 2. . In other words:

$$
" n \text { is even" }=" 2 \mid n "=" \exists k \in \mathbb{Z}, 2 k=n . "
$$

(c) Consider an integer $n \in \mathbb{Z}$. Prove that if n^{2} is even then n is even.

We wish to prove that $2 \mid n^{2}$ implies $2 \mid n$. In order to do this we will instead prove the (equivalent) contrapositive statement that $2 \nmid n$ implies $2 \nmid n^{2}$. We will also use the fact (proved from the division theorem) that every non-even (i.e., odd) number has the form $2 k+1$ for some $k \in \mathbb{Z}$.

So let us suppose that $n \in \mathbb{Z}$ is odd; say $n=2 k+1$ for some $k \in \mathbb{Z}$. It follows that

$$
n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1=2 \cdot(\text { some integer })+1
$$

is also odd.
6. Bonus. Give a counting proof of the following identity:

$$
k\binom{n}{k}=n\binom{n-1}{k-1} .
$$

Proof: Consider integers $0 \leq k \leq n$. From a bag of n unlabeled apples we will choose k apples to receive stickers. One of these k apples will receive two stickers and the other $k-1$ will receive one sticker each. We will count the possibilities in two ways.

On the one hand, we can choose the k stickered apples in $\binom{n}{k}$ ways. Then there are $k=\binom{k}{1}$ ways to choose the apple that will receive two stickers. This gives a total of

$$
\binom{n}{k} \times k \quad \text { choices }
$$

On the other hand, we could first choose the two-stickered apple. There are $n=\binom{n}{1}$ ways to do this. Then we could choose $k-1$ apples from the remaining $n-1$ apples to receive one sticker each. There are $\binom{n-1}{k-1}$ ways to do this, for a total of

$$
n \times\binom{ n-1}{k-1} \quad \text { choices. }
$$

Since these two formulas count the same things, they must be equal.

