1. Accurately state the the Principle of Induction for \mathbb{N}.

Consider any function $P: \mathbb{N} \rightarrow\{T, F\}$. If

- $P(b)=T$ for some $b \in \mathbb{N}$, and
- $P(k) \Rightarrow P(k+1)$ for all $k \geq b$,
then we have $P(n)=T$ for all $n \geq b$.

2. Consider the sequence defined recursively by $a_{0}=1, a_{1}=3$, and $a_{n}=a_{n-1}+a_{n-2}$ for all $n \geq 2$. Compute a_{5}.

We record the sequence in a table:

$$
\begin{array}{c|cccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline a_{n} & 1 & 3 & 4 & 7 & 11 & 18
\end{array}
$$

Note that $a_{5}=18$.
3. For the sequence in Problem 2, what value does a_{n} / a_{n-1} approach as $n \rightarrow \infty$?

If we divide the equation $a_{n}=a_{n-1}+a_{n-2}$ by a_{n-1} we get

$$
\frac{a_{n}}{a_{n-1}}=1+\frac{a_{n-2}}{a_{n-1}}=1+\frac{1}{a_{n-1} / a_{n-2}} .
$$

If a_{n} / a_{n-1} approaches ℓ as $n \rightarrow \infty$, then so does a_{n-1} / a_{n-2} and the equation says

$$
\ell=1+1 / \ell
$$

The solutions are $\ell=(1 \pm \sqrt{5}) / 2$. Since ℓ must be positive we conclude that $\ell=(1+\sqrt{5}) / 2$.
Now consider the sequence defined recursively by $r_{0}=1$ and $r_{n}=2 \cdot r_{n-1}$ for all $n \geq 1$. Let $P(n)$ be the statement " $r_{n}=2^{n}$ ". You will prove by induction that $P(n)=T$ for all $n \geq 0$.
4. State and prove the base case.

The base case is $n=0$. Note that the statement $P(0)$ is true because $1=2^{0}$.
5. State and prove the induction step.

Consider any $k \geq 0$ and assume for induction that $P(k)=T$. That is, assume that $r_{k}=2^{k}$. In this case we want to show that $P(k+1)=T$. That is, we want to show that $r_{k+1}=2^{k+1}$. Finally, observe that the recurrence and our assumption together imply that

$$
r_{k+1}=2 \cdot r_{k}=2 \cdot 2^{k}=2^{k+1}
$$

as desired.

