1. Accurately state the Well-Ordering Axiom for \mathbb{N}.

Every nonempty subset of \mathbb{N} has a smallest element.
2. Accurately state the Principle of Induction for \mathbb{N}.

Consider a function $P: \mathbb{N} \rightarrow\{T, F\}$. If

- $P(b)=T$ for some $b \in \mathbb{N}$, and
- for all $k \geq b$ we have $P(k) \Rightarrow P(k+1)$,
then it follows that $P(n)=T$ for all $n \geq b$.

Recall that we define the Boolean function \Leftrightarrow by

$$
" P \Leftrightarrow Q ":=" P \Rightarrow Q " \wedge " Q \Rightarrow P " .
$$

3. Draw the truth table for $P \Leftrightarrow Q$.

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$(P \Rightarrow Q) \wedge(Q \Rightarrow P)$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

4. Express $P \Leftrightarrow Q$ in terms of the basic operations \vee, \wedge, \neg.

The disjunctive normal form is

$$
P \Leftrightarrow Q=(P \wedge Q) \vee(\neg P \wedge \neg Q) .
$$

We could also use the fact that $P \Rightarrow Q=\neg P \vee Q$ and $Q \Rightarrow P=\neg Q \vee P$ to write

$$
P \Leftrightarrow Q=(\neg P \vee Q) \wedge(\neg Q \vee P) .
$$

5. Consider $n \in \mathbb{Z}$. Prove that the following statement is true by proving its contrapositive: "If n^{2} is even, then n is even."
Proof. Let $P=" n^{2}$ is even" and $Q=" n$ is even". We wish to prove that $P \Rightarrow Q$. To do this we will prove the equivalent statement $\neg Q \Rightarrow \neg P$. In other words, "if n is odd then n^{2} is odd". So assume that n is odd, say $n=2 k+1$ for some $k \in \mathbb{Z}$. Then we have

$$
\begin{aligned}
n^{2} & =(2 k+1)^{2} \\
& =4 k^{2}+2 k+2 k+1 \\
& =4 k^{2}+4 k+1 \\
& =2\left(2 k^{2}+2 k\right)+1 .
\end{aligned}
$$

Since $n^{2}=2$ (some integer) +1 we conclude that n^{2} is odd.

