1. Accurately state the Well-Ordering Axiom for \mathbb{N} .

Every nonempty subset of \mathbb{N} has a smallest element.

2. Accurately state the Principle of Induction for \mathbb{N} .

Consider a function $P : \mathbb{N} \to \{T, F\}$. If

- P(b) = T for some $b \in \mathbb{N}$, and
- for all $k \ge b$ we have $P(k) \Rightarrow P(k+1)$,

then it follows that P(n) = T for all $n \ge b$.

Recall that we define the Boolean function \Leftrightarrow by

$$"P \Leftrightarrow Q" := "P \Rightarrow Q" \land "Q \Rightarrow P".$$

3. Draw the truth table for $P \Leftrightarrow Q$.

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$ (P \Rightarrow Q) \land (Q \Rightarrow P) $
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

4. Express $P \Leftrightarrow Q$ in terms of the basic operations \lor, \land, \neg .

The disjunctive normal form is

$$P \Leftrightarrow Q = (P \land Q) \lor (\neg P \land \neg Q).$$

We could also use the fact that $P \Rightarrow Q = \neg P \lor Q$ and $Q \Rightarrow P = \neg Q \lor P$ to write

2

$$P \Leftrightarrow Q = (\neg P \lor Q) \land (\neg Q \lor P).$$

5. Consider $n \in \mathbb{Z}$. Prove that the following statement is true by proving its contrapositive: "If n^2 is even, then n is even."

Proof. Let $P = "n^2$ is even" and Q = "n is even". We wish to prove that $P \Rightarrow Q$. To do this we will prove the equivalent statement $\neg Q \Rightarrow \neg P$. In other words, "if n is odd then n^2 is odd". So **assume** that n is odd, say n = 2k + 1 for some $k \in \mathbb{Z}$. Then we have

$$n^{2} = (2k + 1)^{2}$$

= 4k² + 2k + 2k + 1
= 4k² + 4k + 1
= 2(2k² + 2k) + 1.

Since $n^2 = 2$ (some integer) + 1 we conclude that n^2 is odd.