Throughout this quiz, P and Q are Boolean variables.

1. Write out the truth table for $P \lor Q$.

Proof.

Math 309

Quiz 2 Solutions

P	Q	$ P \lor Q$
T	T	T
T	F	T
F	T	T
F	F	F

2. Write out the truth table for $P \wedge Q$.

Proof.

P	Q	$P \wedge Q$
T	T	T
T	F	F
F	T	F
F	F	F
		1

Now consider the Boolean function $\varphi:\{T,F\}^2\to\{T,F\}$ defined by the following table:

P	Q	$\varphi(P,Q)$
Τ	T	T
T	F	F
F	T	T
F	F	T

3. Write out the truth table for $\neg \varphi(P,Q)$.

Proof.

P	Q	$\neg \varphi(P,Q)$
T	T	F
T	F	T
F	T	F
F	F	F

4. Tell me a **formula** for $\neg \varphi(P,Q)$ in terms of \lor, \land, \neg . [Hint: Disjunctive normal form.]

Proof. The only T is in the (T, F) row of the truth table. This row corresponds to the formula $P \wedge \neg Q$ (and we can think of it as a region of the corresponding Venn diagram). Therefore the disjunctive normal form is

$$\neg \varphi(P,Q) = P \land \neg Q.$$

5. Now tell me a formula for $\varphi(P,Q)$. [Hint: Use Problem 4 and de Morgan's identity.]

Proof. We can read the disjunctive normal form of $\varphi(P,Q)$ from the truth table above. There are three T's in the rows (T,T), (F,T) and (F,F). Therefore the disjunctive normal form is

$$\varphi(P,Q) = (P \land Q) \lor (\neg P \land Q) \lor (\neg P \land \neg Q).$$

However, this doesn't look very nice. We get a more compact formula by using Problem 4 and applying de Morgan's identity. We have

$$\neg \varphi(P,Q) = P \land \neg Q$$
$$\varphi(P,Q) = \neg(P \land \neg Q)$$
$$\varphi(P,Q) = \neg P \lor \neg \neg Q$$
$$\varphi(P,Q) = \neg P \lor Q.$$

[Remark: The Boolean function φ is very important in mathematics. In this class we will denote it by " $P \Rightarrow Q$ " := $\varphi(P,Q)$ and we will read the statement " $P \Rightarrow Q$ " as "if P then Q", or "Pimplies Q". (WARNING: This definition might not totally agree with your intuition about the words "if ...then ...". For example, do you regard "if 1 + 1 = 3 then 1 + 1 = 5" to be a true statement? I do.) Mathematical proofs and logical arguments are built from these arrows.]