Throughout this quiz, P and Q are Boolean variables.

1. Write out the truth table for $P \vee Q$.

Proof.

P	Q	$P \vee Q$
T	T	T
T	F	T
F	T	T
F	F	F

2. Write out the truth table for $P \wedge Q$.

Proof.

P	Q	$P \wedge Q$
T	T	T
T	F	F
F	T	F
F	F	F

Now consider the Boolean function $\varphi:\{T, F\}^{2} \rightarrow\{T, F\}$ defined by the following table:

P	Q	$\varphi(P, Q)$
T	T	T
T	F	F
F	T	T
F	F	T

3. Write out the truth table for $\neg \varphi(P, Q)$.

Proof.

P	Q	$\neg \varphi(P, Q)$
T	T	F
T	F	T
F	T	F
F	F	F

4. Tell me a formula for $\neg \varphi(P, Q)$ in terms of \vee, \wedge, \neg. [Hint: Disjunctive normal form.]

Proof. The only T is in the (T, F) row of the truth table. This row corresponds to the formula $P \wedge \neg Q$ (and we can think of it as a region of the corresponding Venn diagram). Therefore the disjunctive normal form is

$$
\neg \varphi(P, Q)=P \wedge \neg Q .
$$

5. Now tell me a formula for $\varphi(P, Q)$. [Hint: Use Problem 4 and de Morgan's identity.]

Proof. We can read the disjunctive normal form of $\varphi(P, Q)$ from the truth table above. There are three T 's in the rows $(T, T),(F, T)$ and (F, F). Therefore the disjunctive normal form is

$$
\varphi(P, Q)=(P \wedge Q) \vee(\neg P \wedge Q) \vee(\neg P \wedge \neg Q) .
$$

However, this doesn't look very nice. We get a more compact formula by using Problem 4 and applying de Morgan's identity. We have

$$
\begin{aligned}
\neg \varphi(P, Q) & =P \wedge \neg Q \\
\varphi(P, Q) & =\neg(P \wedge \neg Q) \\
\varphi(P, Q) & =\neg P \vee \neg \neg Q \\
\varphi(P, Q) & =\neg P \vee Q .
\end{aligned}
$$

[Remark: The Boolean function φ is very important in mathematics. In this class we will denote it by " $P \Rightarrow Q$ " $:=\varphi(P, Q)$ and we will read the statement " $P \Rightarrow Q$ " as "if P then Q ", or " P implies Q ". (WARNING: This definition might not totally agree with your intuition about the words "if ...then ...". For example, do you regard "if $1+1=3$ then $1+1=5$ " to be a true statement? I do.) Mathematical proofs and logical arguments are built from these arrows.]

