The purpose of this homework is to let you practice the technique of induction. Each proof should take up a good amount of space. Don't try to shrink it down to one paragraph. Make sure that the logical structure of the proof is expressed clearly.

1. Let r be a real number other than 1 . Use induction to prove that for all $n \in \mathbb{N}$ we have

$$
1+r+r^{2}+\cdots+r^{n}=\frac{r^{n+1}-1}{r-1}
$$

2. Use induction to prove that $n^{3}+3 n^{2}+2 n$ is divisible by 6 for all $n \in \mathbb{N}$. [Recall: We say that $m \in \mathbb{Z}$ is divisible by 6 if there exists an integer $d \in \mathbb{Z}$ such that $m=6 d$.]
3. Let n be any positive integer and let $A_{1}, A_{2}, \ldots, A_{n}$ be any n subsets of the universal set U. Use induction to prove that

$$
\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)^{c}=A_{1}^{c} \cap A_{2}^{c} \cap \cdots \cap A_{n}^{c} .
$$

[Hint: Let $P(n)=$ "Given any n subsets $A_{1}, A_{2}, \ldots, A_{n}$ of the universal set U, we have $\left(A_{1} \cup\right.$ $\left.\cdots \cup A_{n}\right)^{c}=A_{1}^{c} \cap \cdots \cap A_{n}^{c}$ ". I know it's long, but this is the $P(n)$ we want to prove. Don't shorten it! The base case is $n=2$. How do we know that $P(2)$ is a true statement?]
4. Use induction to prove that there are 2^{n} binary strings of length n for all $n \in \mathbb{N}$. [Hint: Let $P(n)=$ "There are 2^{n} binary strings of length n ". For the induction step, let $k \geq 0$ and assume that $P(k)=T$. In this (hypothetical) case you want to show that $P(k+1)=T$. To do this, let S be the set of binary strings of length $k+1$. Write $S=A \sqcup B$, where A is the subset of binary strings that begin with 0 , and B is the subset of binary strings that begin with 1 . Explain why you know that that $\# A=\# B=2^{k}$. Now what?]

