Recall that we define the logical symbol " \Rightarrow " by " $P \Rightarrow Q$ " $:=$ " $\neg P \vee Q$ ". We pronounce the statement " $P \Rightarrow Q$ " as "if P then Q ", or " P implies Q ". Recall that we say an integer $n \in \mathbb{Z}$ is even if there exists $k \in \mathbb{Z}$ such tha $n=2 k$, and we say that $n \in \mathbb{Z}$ is odd if there exists $k \in \mathbb{Z}$ such that $n=2 k+1$. On Problems $1-4$ you will give a (hopefully) nice proof that for all $m, n \in \mathbb{Z}$ we have

$$
(m n \text { is even }) \Longleftrightarrow(m \text { is even or } n \text { is even }) .
$$

1. Use the contrapositive to show that " $P \Rightarrow(Q \vee R)$ " $=$ " $(\neg Q \wedge \neg R) \Rightarrow \neg P$ ".

Proof. Applying the contrapositive and then de Morgan's identity gives

$$
\begin{aligned}
" P \Rightarrow(Q \vee R) " & =" \neg(Q \vee R) \Rightarrow \neg P " \\
& ="(\neg Q \wedge \neg R) \Rightarrow \neg P " .
\end{aligned}
$$

In words, this means that the statement "if P is true then Q or R is true" is logically equivalent to the statement "if Q and R are both false then P is false".
2. Use the result from Problem 1 to prove that if $m n$ is even, then m is even or n is even. [Hint: Let $P=" m n$ is even", $Q=" m$ is even", and $R=" n$ is even".]

Proof. If we let $P=" m n$ is even", $Q=" m$ is even", and $R=" n$ is even", then the statement we want to prove is $P \Rightarrow(Q \vee R)$. By Problem 1 this is logically equivalent to the statement $(\neg Q \wedge \neg R) \Rightarrow \neg P$. In other words, "if m and n are both odd, then $m n$ is odd". We will prove this statement.

So assume that m and n are both odd. This means that there exist integers $k, \ell \in \mathbb{Z}$ such that $m=2 k+1$ and $n=2 \ell+1$. Multiplying these gives

$$
\begin{aligned}
m n & =(2 k+1)(2 \ell+1) \\
& =4 k \ell+2 k+2 \ell+1 \\
& =2(2 k \ell+k+\ell)+1 .
\end{aligned}
$$

Since $m n=2$ (some integer) +1 , we conclude that $m n$ is odd as desired.
3. Use a truth table to show that " $(P \vee Q) \Rightarrow R "="(P \Rightarrow R) \wedge(Q \Rightarrow R)$ ".

Proof. Here is the truth table.

P	Q	R	$P \vee Q$	$(P \vee Q) \Rightarrow R$	$P \Rightarrow R$	$Q \Rightarrow R$	$(P \Rightarrow R) \wedge(Q \Rightarrow R)$
T							
T	T	F	T	F	F	F	F
T	F	T	T	T	T	T	T
T	F	F	T	F	F	T	F
F	T						
F	T	F	T	F	T	F	F
F	F	T	F	T	T	T	T
F	F	F	F	T	T	T	T

Note that the 5 th and 8 th columns are logically equivalent. In words, the statement "if P or Q is true then R is true" is logically equivalent to the statment "if P is true then R is true, and if Q is true then R is true". This doesn't sound as nice but it is an easier statement to prove, as we will see.
4. Use the result from Problem 3 to prove that if m is even or n is even, then $m n$ is even. [Hint: What are P, Q, and R in this case?]
Proof. Let $P=" m$ is even", $Q=" n$ is even", and $R=" m n$ is even. The statement we want to prove is $(P \vee Q) \Rightarrow R$. By Problem 3, this is equivalent to the statement $(P \Rightarrow R) \wedge(Q \Rightarrow R)$. In other words, "if m is even then $m n$ is even, and if n is even then $m n$ is even". These are two statements that we can prove separately.

First, assume that m is even, i.e., there exists $k \in \mathbb{Z}$ such that $m=2 k$. In this case we have $m n=2 k n=2(k n)=2$ (some integer), and so $m n$ is even as desired.

Sedond, assume that n is even, i.e., there exists $\ell \in \mathbb{Z}$ such that $n=2 \ell$. In this case we have $m n=m 2 \ell=2(m \ell)=2$ (some integer), and so $m n$ is even as desired.
5. Fill in the rest of this table. What does it remind you of? Use the table to express the statement " $m+n$ is even" in terms of the statements " m is even" and " n is even", together with the logical symbols \vee, \wedge, \neg.

m	n	$m n$	$m+n$
E	E	E	E
E	O	E	O
O	E	E	O
O	O	O	E

Proof. The symbols E and O represent "even" and "odd". The table reminds me of this:

P	Q	$P \vee Q$	$P \Leftrightarrow Q$
T	T	T	T
T	F	T	F
F	T	T	F
F	F	F	T

We can interpret $P=" m$ is even" and $Q=" n$ is even". Then the 3rd columns of the tables tell us that " $m n$ is even" is logically equivalent to " m is even or n is even", which is what we proved in Problems 1-4.

The 4th columns of the tables tell us that " $m+n$ is even" is logically equivalent to " m is even" \Leftrightarrow " n is even". Can we write this in terms of the symbols \vee, \wedge, \neg ? Well, the disjunctive normal form of $P \Leftrightarrow Q$ is

$$
" P \Leftrightarrow Q "="(P \wedge Q) \vee(\neg P \wedge \neg Q) " .
$$

So we can say that " $m+n$ is even" is logically equivalent to " m and n are both even, or m and n are both odd". This is not surprising if you think about it.
[Remark: We have just discovered that the properties of being even and being odd form some kind of algebra with two elements called E and O. They can be added and multiplied.]

