Recall that we define the logical symbol " \Rightarrow " by " $P \Rightarrow Q$ " $:=$ " $\neg P \vee Q$ ". We pronounce the statement " $P \Rightarrow Q$ " as "if P then Q ", or " P implies Q ". Recall that we say an integer $n \in \mathbb{Z}$ is even if there exists $k \in \mathbb{Z}$ such tha $n=2 k$, and we say that $n \in \mathbb{Z}$ is odd if there exists $k \in \mathbb{Z}$ such that $n=2 k+1$. On Problems $1-4$ you will give a (hopefully) nice proof that for all $m, n \in \mathbb{Z}$ we have

$$
(m n \text { is even }) \Longleftrightarrow(m \text { is even or } n \text { is even }) .
$$

1. Use the contrapositive to show that " $P \Rightarrow(Q \vee R)$ " $=$ " $(\neg Q \wedge \neg R) \Rightarrow \neg P$ ".
2. Use the result from Problem 1 to prove that if $m n$ is even, then m is even or n is even. [Hint: Let $P=" m n$ is even", $Q=" m$ is even", and $R=" n$ is even".]
3. Use a truth table to show that " $(P \vee Q) \Rightarrow R "="(P \Rightarrow R) \wedge(Q \Rightarrow R)$ ".
4. Use the result from Problem 3 to prove that if m is even or n is even, then $m n$ is even. [Hint: What are P, Q, and R in this case?]
5. Fill in the rest of this table. What does it remind you of? Use the table to express the statement " $m+n$ is even" in terms of the statements " m is even" and " n is even", together with the logical symbols \vee, \wedge, \neg.

m	n	$m n$	$m+n$
E	E		
E	O		
O	E		
O	O		

