
Math 309 Summer 2014
Homework 3 Solutions Drew Armstrong

Let k and n be integers such that 0 ≤ k ≤ n. Then we define:(
n

k

)
:=

n!

k! (n− k)!

1. Use algebra to verify that for relevant values of k and n we have(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Proof. We find a common denominator and then add the fractions to get(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(n− 1)!

k!(n− k − 1)!
+

(n− 1)!

(k − 1)!(n− k)!

=
(n− k)

(n− k)
· (n− 1)!

k!(n− k − 1)!
+

k

k
· (n− 1)!

(k − 1)!(n− k)!

=
(n− k)(n− 1)!

k!(n− k)!
+

k(n− 1)!

k!(n− k)!

=
[(n− k) + k](n− 1)!

k!(n− k)!

=
n(n− 1)!

k!(n− k)!

=
n!

k!(n− k)!

=

(
n

k

)
.

�

2. Now give a counting argument for the identity in Problem 1. [Hint: Consider the set of
binary strings of length n containing k 1’s. Divide these into two kinds of strings: those with
leftmost symbol 0 and those with leftmost symbol 1. How many of each kind are there?]

Proof. Recall that
(
n
k

)
is the number of binary strings of length n containing k 1’s. Let S be

the set of such strings. We can decompose S as a union of two disjoint subsets

S = S0 t S1,

where S0 is the set of binary strings of length n containing k 1’s, whose leftmost symbol is
“0”, and S1 is the set whose leftmost symbol is “1”. We know (for example, from our recent
discussion of probability) that (

n

k

)
= #S = #S0 + #S1.

Now I claim that #S0 =
(
n−1
k

)
and #S1 =

(
n−1
k−1

)
. Indeed, if the leftmost symbol is 0 then the

remaining symbols form a binary string of length n− 1 containing k 1’s, and there are
(
n−1
k

)



of these. And if the leftmost symbol is 1 then the remaining n − 1 symbols form a binary
string of length n − 1 containing k − 1 1’s (because the leftmost symbol is one of the k 1’s),

and there are
(
n−1
k−1

)
of these. We conclude that(

n

k

)
= #S = #S0 + #S1 =

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

�

[An example will be helpful. Here are the binary strings of length 5 containing 3 1’s.

11100 01110
11010 01101
11001 01011
10110 00111
10101
10011

Note that there are
(
5
3

)
= 10 of these and we can divide them into two groups. The strings on the

left have first symbol 1. The number of these is
(
4
2

)
= 6 because by deleting the first symbol we

obtain the strings of length 4 with 2 1’s:

1100 1010 1001 0110 0101 0011.

The strings on the right have first symbol 0. The number of these is
(
4
3

)
= 4 because by deleting

the first symbol we obtain the strings of length 4 with 3 1’s:

1110 1101 1011 0111.

This explains why
(
5
3

)
=

(
4
3

)
+
(
4
2

)
.]

It seems that the notation
(
n
k

)
only makes sense when k and n are integers such that

0 ≤ k ≤ n. However, note that we can rewrite the formula as(
n

k

)
=

n!

k! (n− k)!
=

(n)k
k!

,

where (n)k := n(n − 1)(n − 2) · · · (n − k + 1). The interesting thing about this is that (z)k
makes sense for any real or complex number z. This allows us to define(

z

k

)
:=

(z)k
k!

,

where k ∈ N and z is any real or complex number. Why would we want to do this?

3. Use the definition
(
z
k

)
:= (z)k/k! to evaluate the following.

(a) If k, n ∈ N with k > n, show that
(
n
k

)
= 0.

(b) For k ∈ N and any integer n, show that(
−n
k

)
= (−1)k

(
n + k − 1

k

)
.



Proof. For part (a), suppose that k, n ∈ N with k > n. Let’s say that k = n + d with d ≥ 1.
By definition we have

(
n
k

)
= (n)k/k! where

(n)k = n(n− 1)(n− 2) · · · (n− k + 1)

= n(n− 1)(n− 2) · · · 3 · 2 · 1 · 0 · (−1) · (−2) · · · · · (−d + 1)

= 0.

The product is zero because it contains 0 as a factor. We conclude that
(
n
k

)
= 0/k! = 0. This

still seems reasonable because, for example, the number of ways to choose 7 different things
from a set of 5 is zero.

For part (b), let k and n be integers such that k ≥ 0 (so k! is defined). Then we have(
−n
k

)
=

(−n)k
k!

=
−n(−n− 1)(−n− 2) · · · (−n− k + 1)

k!

=
(−1)n(−1)(n + 1)(−1)(n + 2) · · · (−1)(n + k − 1)

k!

=
(−1)k(n + 1)(n + 2) · · · (n + k − 1)

k!

=
(−1)k[n + k − 1][(n + k − 1)− 1] · · · [(n + k − 1)− k + 2][(n + k − 1)− k + 1]

k!

=
(−1)k(n + k − 1)k

k!

= (−1)k
(
n + k − 1

k!

)
.

In fact, I notice that we didn’t even need n to be an integer. This equation is true for any
complex number n. �

[Is the equation from part (b) reasonable? Does it have anything to do with counting? Maybe ...
but a more obvious application comes from Isaac Newton. He showed that the numbers

(
z
k

)
where

z is any complex number show up as the coefficients of the Taylor series for the function (1 + x)z

near x = 0.]

4. Let x and z be any complex numbers with |x| < 1. Isaac Newton proved that

(1 + x)z = 1 +

(
z

1

)
x +

(
z

2

)
x2 +

(
z

3

)
x3 + · · · ,

where the right hand side is a convergent infinite series.

(a) Show that this gives the usual Binomial Theorem when z := n ∈ N.
(b) Use Newton’s formula to obtain an infinite series expansion of (1 + x)−2.

Proof. For part (a), let n ∈ N. Then from our result in Problem 3(a), Newton’s formula says

(1 + x)n = 1 +

(
n

1

)
x +

(
n

2

)
x2 +

(
n

3

)
x3 + · · ·+

(
n

n

)
xn + 0 + 0 + 0 + · · · ,

which is just the usual Binomial Theorem.



For part (b) we first use our formula from Problem 3(b) to see that(
−2

k

)
= (−1)k

(
2 + k − 1

k

)
= (−1)k

(
k + 1

k

)
= (−1)k(k + 1).

Then Newton’s formula says

1

(1 + x)2
= 1 +

(
−2

1

)
x +

(
−2

2

)
x2 +

(
−2

3

)
x3 + · · ·

= 1− 2x + 3x2 − 4x3 + 5x4 − 6x5 + · · · .
�

[Wow, that power series from Problem 4(b) looks like the derivative of something. It is the
derivative of something. Recall the famous “geometric series”:

1

1− x
= 1 + x + x2 + x3 + x4 + · · · .

This is true for x near 0. Substituting −x for x gives

1

1 + x
= 1− x + x2 − x3 + x4 − · · · ,

which is still true for x near 0. Note that this is just Newton’s binomial theorem with z = −1.
Finally, if we differentiate both sides of this series we get

−1

(1 + x)2
= 0− 1 + 2x− 3x2 + 4x3 − · · ·

1

(1 + x)2
= 1− 2x + 3x2 − 4x3 + · · · .

What happens if you differentiate the series again? Maybe you will start to see how Newton
discovered his binomial theorem.]


