Math 309 Summer 2014
Homework 3 Solutions Drew Armstrong

Let k and n be integers such that 0 < k < n. Then we define:
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1. Use algebra to verify that for relevant values of k and n we have
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Proof. We find a common denominator and then add the fractions to get
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2. Now give a counting argument for the identity in Problem 1. [Hint: Consider the set of
binary strings of length n containing k 1’s. Divide these into two kinds of strings: those with
leftmost symbol 0 and those with leftmost symbol 1. How many of each kind are there?]

Proof. Recall that (Z) is the number of binary strings of length n containing k 1’s. Let S be
the set of such strings. We can decompose S as a union of two disjoint subsets

S = Sy LSy,
where Sy is the set of binary strings of length n containing k£ 1’s, whose leftmost symbol is

“0”, and S; is the set whose leftmost symbol is “1”. We know (for example, from our recent
discussion of probability) that

(Z) = #S = #S0 + #5).

Now I claim that #Sy = (”;1) and #51 = (Zj) Indeed, if the leftmost symbol is 0 then the
remaining symbols form a binary string of length n — 1 containing k 1’s, and there are (";1)



of these. And if the leftmost symbol is 1 then the remaining n — 1 symbols form a binary
string of length n — 1 containing £ — 1 1’s (because the leftmost symbol is one of the k 1’s),
and there are ("71) of these. We conclude that

k—1
n n—1 n—1
<k>:#5:#50+#51:< i >+<k—1>.

[An example will be helpful. Here are the binary strings of length 5 containing 3 1's.

11100 01110
11010 01101
11001 01011
10110 00111
10101
10011

Note that there are (g) = 10 of these and we can divide them into two groups. The strings on the

left have first symbol 1. The number of these is (3) = 6 because by deleting the first symbol we
obtain the strings of length 4 with 2 1's:

1100 1010 1001 0110 0101 O0O011.

The strings on the right have first symbol 0. The number of these is (3) = 4 because by deleting
the first symbol we obtain the strings of length 4 with 3 1's:

1110 1101 1011 O111.

This explains why (g) = (g) + (‘21)]

It seems that the notation (z) only makes sense when k£ and n are integers such that
0 < k < n. However, note that we can rewrite the formula as

<Z> T K (nn!— o) O?tk

where (n); :=n(n —1)(n —2)---(n — k 4+ 1). The interesting thing about this is that (z)j
makes sense for any real or complex number z. This allows us to define

()=

where k£ € N and z is any real or complex number. Why would we want to do this?

3. Use the definition (}) := (2)x/k! to evaluate the following.

(a) If k,n € N with k > n, show that (}) = 0.
(b) For k € N and any integer n, show that

(7) = (")



Proof. For part (a), suppose that k,n € N with £ > n. Let’s say that kK = n + d with d > 1.
By definition we have (}) = (n)i/k! where
()i = n(n —1)(n —2)- - (n —k+1)
=nn—-1)n-2)---3-2-1-0-(=1)-(=2)-----(=d+1)
= 0.
The product is zero because it contains 0 as a factor. We conclude that (Z) = 0/k! = 0. This
still seems reasonable because, for example, the number of ways to choose 7 different things

from a set of 5 is zero.
For part (b), let £ and n be integers such that k£ > 0 (so k! is defined). Then we have
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In fact, I notice that we didn’t even need n to be an integer. This equation is true for any
complex number n. O

[Is the equation from part (b) reasonable? Does it have anything to do with counting? Maybe ...

but a more obvious application comes from Isaac Newton. He showed that the numbers (z) where

z is any complex number show up as the coefficients of the Taylor series for the function (1 + x)*
near x = 0.]

4. Let z and z be any complex numbers with |z| < 1. Isaac Newton proved that

(1+a2)* =1+ <i>x+ <;>x2—|— <§>x3+

where the right hand side is a convergent infinite series.

(a) Show that this gives the usual Binomial Theorem when z :=n € N.
(b) Use Newton’s formula to obtain an infinite series expansion of (1 + z)~2.

Proof. For part (a), let n € N. Then from our result in Problem 3(a), Newton’s formula says

(1+a)" =1+ (?)x—i— <Z>m2+ <Z>x3+---+ (Z)x"+0+0+0+~-,

which is just the usual Binomial Theorem.



For part (b) we first use our formula from Problem 3(b) to see that

()= () = () vty

Then Newton’s formula says
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[Wow, that power series from Problem 4(b) looks like the derivative of something. It is the
derivative of something. Recall the famous “geometric series”:
LS I S
11—z
This is true for x near 0. Substituting —z for = gives
1
142
which is still true for = near 0. Note that this is just Newton's binomial theorem with z = —1.
Finally, if we differentiate both sides of this series we get
-1
(1+a)?
1
(1+x)?
What happens if you differentiate the series again? Maybe you will start to see how Newton
discovered his binomial theorem.]
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=1-2z+32% — 423+ ...



