Let k and n be integers such that $0 \leq k \leq n$. Then we define:

$$
\binom{n}{k}:=\frac{n!}{k!(n-k)!}
$$

1. Use algebra to verify that for relevant values of k and n we have

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} .
$$

Proof. We find a common denominator and then add the fractions to get

$$
\begin{aligned}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-k-1)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-k)}{(n-k)} \cdot \frac{(n-1)!}{k!(n-k-1)!}+\frac{k}{k} \cdot \frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-k)(n-1)!}{k!(n-k)!}+\frac{k(n-1)!}{k!(n-k)!} \\
& =\frac{[(n-k)+k](n-1)!}{k!(n-k)!} \\
& =\frac{n(n-1)!}{k!(n-k)!} \\
& =\frac{n!}{k!(n-k)!} \\
& =\binom{n}{k} .
\end{aligned}
$$

2. Now give a counting argument for the identity in Problem 1. [Hint: Consider the set of binary strings of length n containing k 1's. Divide these into two kinds of strings: those with leftmost symbol 0 and those with leftmost symbol 1. How many of each kind are there?]
Proof. Recall that $\binom{n}{k}$ is the number of binary strings of length n containing k 1's. Let S be the set of such strings. We can decompose S as a union of two disjoint subsets

$$
S=S_{0} \sqcup S_{1},
$$

where S_{0} is the set of binary strings of length n containing k 1's, whose leftmost symbol is " 0 ", and S_{1} is the set whose leftmost symbol is " 1 ". We know (for example, from our recent discussion of probability) that

$$
\binom{n}{k}=\# S=\# S_{0}+\# S_{1} .
$$

Now I claim that $\# S_{0}=\binom{n-1}{k}$ and $\# S_{1}=\binom{n-1}{k-1}$. Indeed, if the leftmost symbol is 0 then the remaining symbols form a binary string of length $n-1$ containing k 's, and there are $\binom{n-1}{k}$
of these. And if the leftmost symbol is 1 then the remaining $n-1$ symbols form a binary string of length $n-1$ containing $k-11$'s (because the leftmost symbol is one of the k 1's), and there are $\binom{n-1}{k-1}$ of these. We conclude that

$$
\binom{n}{k}=\# S=\# S_{0}+\# S_{1}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

[An example will be helpful. Here are the binary strings of length 5 containing 3 1's.

11100	01110
11010	01101
11001	01011
10110	00111
10101	
10011	

Note that there are $\binom{5}{3}=10$ of these and we can divide them into two groups. The strings on the left have first symbol 1 . The number of these is $\binom{4}{2}=6$ because by deleting the first symbol we obtain the strings of length 4 with 21 's:

$$
\begin{array}{llllll}
1100 & 1010 & 1001 & 0110 & 0101 & 0011
\end{array}
$$

The strings on the right have first symbol 0 . The number of these is $\binom{4}{3}=4$ because by deleting the first symbol we obtain the strings of length 4 with 31 's:
1110110110110111.

This explains why $\left.\binom{5}{3}=\binom{4}{3}+\binom{4}{2}.\right]$

It seems that the notation $\binom{n}{k}$ only makes sense when k and n are integers such that $0 \leq k \leq n$. However, note that we can rewrite the formula as

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{(n)_{k}}{k!}
$$

where $(n)_{k}:=n(n-1)(n-2) \cdots(n-k+1)$. The interesting thing about this is that $(z)_{k}$ makes sense for any real or complex number z. This allows us to define

$$
\binom{z}{k}:=\frac{(z)_{k}}{k!}
$$

where $k \in \mathbb{N}$ and z is any real or complex number. Why would we want to do this?
3. Use the definition $\binom{z}{k}:=(z)_{k} / k$! to evaluate the following.
(a) If $k, n \in \mathbb{N}$ with $k>n$, show that $\binom{n}{k}=0$.
(b) For $k \in \mathbb{N}$ and any integer n, show that

$$
\binom{-n}{k}=(-1)^{k}\binom{n+k-1}{k}
$$

Proof. For part (a), suppose that $k, n \in \mathbb{N}$ with $k>n$. Let's say that $k=n+d$ with $d \geq 1$. By definition we have $\binom{n}{k}=(n)_{k} / k$! where

$$
\begin{aligned}
(n)_{k} & =n(n-1)(n-2) \cdots(n-k+1) \\
& =n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1 \cdot 0 \cdot(-1) \cdot(-2) \cdots \cdots(-d+1) \\
& =0
\end{aligned}
$$

The product is zero because it contains 0 as a factor. We conclude that $\binom{n}{k}=0 / k!=0$. This still seems reasonable because, for example, the number of ways to choose 7 different things from a set of 5 is zero.

For part (b), let k and n be integers such that $k \geq 0$ (so k ! is defined). Then we have

$$
\begin{aligned}
\binom{-n}{k} & =\frac{(-n)_{k}}{k!} \\
& =\frac{-n(-n-1)(-n-2) \cdots(-n-k+1)}{k!} \\
& =\frac{(-1) n(-1)(n+1)(-1)(n+2) \cdots(-1)(n+k-1)}{k!} \\
& =\frac{(-1)^{k}(n+1)(n+2) \cdots(n+k-1)}{k!} \\
& =\frac{(-1)^{k}[n+k-1][(n+k-1)-1] \cdots[(n+k-1)-k+2][(n+k-1)-k+1]}{k!} \\
& =\frac{(-1)^{k}(n+k-1)_{k}}{k!} \\
& =(-1)^{k}\binom{n+k-1}{k!} .
\end{aligned}
$$

In fact, I notice that we didn't even need n to be an integer. This equation is true for any complex number n.
[Is the equation from part (b) reasonable? Does it have anything to do with counting? Maybe ... but a more obvious application comes from Isaac Newton. He showed that the numbers $\binom{z}{k}$ where z is any complex number show up as the coefficients of the Taylor series for the function $(1+x)^{z}$ near $x=0$.]
4. Let x and z be any complex numbers with $|x|<1$. Isaac Newton proved that

$$
(1+x)^{z}=1+\binom{z}{1} x+\binom{z}{2} x^{2}+\binom{z}{3} x^{3}+\cdots
$$

where the right hand side is a convergent infinite series.
(a) Show that this gives the usual Binomial Theorem when $z:=n \in \mathbb{N}$.
(b) Use Newton's formula to obtain an infinite series expansion of $(1+x)^{-2}$.

Proof. For part (a), let $n \in \mathbb{N}$. Then from our result in Problem 3(a), Newton's formula says

$$
(1+x)^{n}=1+\binom{n}{1} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\cdots+\binom{n}{n} x^{n}+0+0+0+\cdots
$$

which is just the usual Binomial Theorem.

For part (b) we first use our formula from Problem 3(b) to see that

$$
\binom{-2}{k}=(-1)^{k}\binom{2+k-1}{k}=(-1)^{k}\binom{k+1}{k}=(-1)^{k}(k+1) .
$$

Then Newton's formula says

$$
\begin{aligned}
\frac{1}{(1+x)^{2}} & =1+\binom{-2}{1} x+\binom{-2}{2} x^{2}+\binom{-2}{3} x^{3}+\cdots \\
& =1-2 x+3 x^{2}-4 x^{3}+5 x^{4}-6 x^{5}+\cdots
\end{aligned}
$$

[Wow, that power series from Problem 4(b) looks like the derivative of something. It is the derivative of something. Recall the famous "geometric series":

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots .
$$

This is true for x near 0 . Substituting $-x$ for x gives

$$
\frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}-\cdots,
$$

which is still true for x near 0 . Note that this is just Newton's binomial theorem with $z=-1$. Finally, if we differentiate both sides of this series we get

$$
\begin{gathered}
\frac{-1}{(1+x)^{2}}=0-1+2 x-3 x^{2}+4 x^{3}-\cdots \\
\frac{1}{(1+x)^{2}}=1-2 x+3 x^{2}-4 x^{3}+\cdots .
\end{gathered}
$$

What happens if you differentiate the series again? Maybe you will start to see how Newton discovered his binomial theorem.]

