Let k and n be integers such that $0 \leq k \leq n$. Then we define:

$$
\binom{n}{k}:=\frac{n!}{k!(n-k)!}
$$

1. Use algebra to verify that for relevant values of k and n we have

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} .
$$

2. Now give a counting argument for the identity in Problem 1. [Hint: Consider the set of binary strings of length n containing k 1's. Divide these into two kinds of strings: those with leftmost symbol 0 and those with leftmost symbol 1 . How many of each kind are there?]

It seems that the notation $\binom{n}{k}$ only makes sense when k and n are integers such that $0 \leq k \leq n$. However, note that we can rewrite the formula as

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{(n)_{k}}{k!},
$$

where $(n)_{k}:=n(n-1)(n-2) \cdots(n-k+1)$. The interesting thing about this is that $(z)_{k}$ makes sense for any real or complex number z. This allows us to define

$$
\binom{z}{k}:=\frac{(z)_{k}}{k!},
$$

where $k \in \mathbb{N}$ and z is any real or complex number. Why would we want to do this?
3. Use the definition $\binom{z}{k}:=(z)_{k} / k$! to evaluate the following.
(a) If $k, n \in \mathbb{N}$ with $k>n$, show that $\binom{n}{k}=0$.
(b) For $k \in \mathbb{N}$ and any integer n, show that

$$
\binom{-n}{k}=(-1)^{k}\binom{n+k-1}{k}
$$

4. Let x and z be any complex numbers with $|x|<1$. Isaac Newton proved that

$$
(1+x)^{z}=1+\binom{z}{1} x+\binom{z}{2} x^{2}+\binom{z}{3} x^{3}+\cdots,
$$

where the right hand side is a convergent infinite series.
(a) Show that this gives the usual Binomial Theorem when $z:=n \in \mathbb{N}$.
(b) Use Newton's formula to obtain an infinite series expansion of $(1+x)^{-2}$.

