If S is a finite set then we let $\# S$ denote its number of elements. We call this the size or the cardinality of S. Sometimes we will use the equivalent notation $|S|:=\# S$.

1. If S and T are finite sets, what is the size of the Cartesian product $S \times T$?

Proof. I claim that the Cartesian product has size $\#(S \times T)=\# S \times \# T$. To see this, we will name the elements of the sets as follows:

$$
S:=\left\{s_{1}, s_{2}, \ldots, s_{m}\right\} \quad T:=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} .
$$

Observe that this notation implies $m=\# S$ and $n=\# T$. Now observe that an element of the Cartesian product is just an element of the following "rectangle" whose rows are indexed by the elements of S and whose columns are inexed by the elements of T :

	t_{1}	t_{2}	\cdots	t_{n}
	s_{1}			
s_{1}	$\left(s_{1}, t_{1}\right)$	$\left(s_{1}, t_{2}\right)$	\cdots	$\left(s_{1}, t_{n}\right)$
	s_{2}	$\left(s_{2}, t_{1}\right)$	$\left(s_{2}, t_{2}\right)$	\cdots
	\vdots	\vdots	\ddots	\vdots
$\left.s_{m}, t_{n}\right)$				
	$\left(s_{m}, t_{1}\right)$	$\left(s_{m}, t_{2}\right)$	\cdots	$\left(s_{m}, t_{n}\right)$

And how many elements does this rectangle have? Isn't this just the definition of $m \times n$? (Yes it is.) We conclude that

$$
\#(S \times T)=m \times n=\# S \times \# T
$$

2. If S and T are finite sets, how many different functions are there from S to T ? Express your answer in terms of the numbers $\# S$ and $\# T$.

Proof. Recall that a function from S to T is a set of arrows from S to T (in other words, a subset of $S \times T$) satisfying one axiom:

- Each element of S has exactly one arrow pointing from it.

So if S is finite then a function from S to T consists of exactly $\# S$ arrows. To specify the function we need to say where each of these arrows points. If T is finite, then each of the $\# S$ arrows has exactly $\# T$ possibilities for where it points. These choices can be made completely independently, and so the total number of possibilities is

$$
\underbrace{\# T \times \# T \times \cdots \times \# T}_{\# S \text { times }}=\# T^{\# S}
$$

We conclude that the number of different functions from S to T is $\# T^{\# S}$. For this reason we might sometimes use the cute notation T^{S} for the set of different functions from S to T. Do you like this notation?
3. Apply your answers from Problems 1 and 2 to show that there are 16 possible functions from the set $\{T, F\}^{2}:=\{T, F\} \times\{T, F\}$ to the set $\{T, F\}$.
Proof. To count the functions from $\{T, F\}^{2}$ to $\{T, F\}$ we let $S:=\{T, F\}^{2}$ and $T:=\{T, F\}$. Note that $\# T=2$, and by Problem 1 we have

$$
\# S=\#\{T, F\}^{2}=\#\{T, F\} \times \#\{T, F\}=2 \times 2=4
$$

Then by applying Problem 2, we see that the total number of functions $S \rightarrow T$ is

$$
\# T^{\# S}=2^{4}=16
$$

4. Explicitly write down all of the functions from $\{1,2,3\}$ to $\{T, F\}$.

Proof. Here they are. There are $2^{3}=8$ of them, as expected.

5. Explicitly write down all of the subsets of $\{1,2,3\}$.

Proof. Here they are.

$1,2,3$		
$\{1,2\}$	$\{1,3\}$	$\{2,3\}$
$\{1\}$	$\{2\}$	$\{3\}$
	\emptyset	

Can anyone see why I arranged them this way?
6. If S is a set with n elements, how many different subsets does S have? [Hint: Compare your answers from Problems 4 and 5. Apply your answer from Problem 2.]
Proof. The whole homework assignment was setting you up to answer this question. Let S be a set with n elements. You should observe from Problems 4 and 5 that a subset of S is the same thing as a function from S to $\{T, F\}$. (The elements inside the subset get sent to T and the elements outside the subset get sent to F.) Therefore the number of subsets of S is the same as the number of functions from S to $\{T, F\}$, which by Problem 2 is

$$
\#\{T, F\}^{\# S}=2^{n} .
$$

We conclude that a set with n elements has exactly 2^{n} different subsets.
[Remark: When I said in Problem 6 that subsets of S and functions $S \rightarrow\{T, F\}$ are the "same thing", what I really meant is that there is a " 1 -to- 1 correspondence" between them. We will discuss the details of this concept later.]

