
Math 309 Summer 2014
Homework 2 Solutions Drew Armstrong

If S is a finite set then we let #S denote its number of elements. We call this the size or
the cardinality of S. Sometimes we will use the equivalent notation |S| := #S.

1. If S and T are finite sets, what is the size of the Cartesian product S × T?

Proof. I claim that the Cartesian product has size #(S×T ) = #S×#T . To see this, we will
name the elements of the sets as follows:

S := {s1, s2, . . . , sm} T := {t1, t2, . . . , tn}.
Observe that this notation implies m = #S and n = #T . Now observe that an element of the
Cartesian product is just an element of the following “rectangle” whose rows are indexed by
the elements of S and whose columns are inexed by the elements of T :

t1 t2 · · · tn

s1

s2

...

sm

(s1, t1) (s1, t2) · · · (s1, tn)

(s2, t1) (s2, t2) · · · (s2, tn)

...
...

. . .
...

(sm, t1) (sm, t2) · · · (sm, tn)

And how many elements does this rectangle have? Isn’t this just the definition of m× n?
(Yes it is.) We conclude that

#(S × T ) = m× n = #S ×#T.

�

2. If S and T are finite sets, how many different functions are there from S to T? Express
your answer in terms of the numbers #S and #T .

Proof. Recall that a function from S to T is a set of arrows from S to T (in other words, a
subset of S × T ) satisfying one axiom:

• Each element of S has exactly one arrow pointing from it.

So if S is finite then a function from S to T consists of exactly #S arrows. To specify the
function we need to say where each of these arrows points. If T is finite, then each of the #S
arrows has exactly #T possibilities for where it points. These choices can be made completely
independently, and so the total number of possibilities is

#T ×#T × · · · ×#T︸ ︷︷ ︸
#S times

= #T#S .

We conclude that the number of different functions from S to T is #T#S . For this reason
we might sometimes use the cute notation TS for the set of different functions from S to T .
Do you like this notation? �



3. Apply your answers from Problems 1 and 2 to show that there are 16 possible functions
from the set {T, F}2 := {T, F} × {T, F} to the set {T, F}.

Proof. To count the functions from {T, F}2 to {T, F} we let S := {T, F}2 and T := {T, F}.
Note that #T = 2, and by Problem 1 we have

#S = #{T, F}2 = #{T, F} ×#{T, F} = 2× 2 = 4.

Then by applying Problem 2, we see that the total number of functions S → T is

#T#S = 24 = 16.
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4. Explicitly write down all of the functions from {1, 2, 3} to {T, F}.

Proof. Here they are. There are 23 = 8 of them, as expected.
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5. Explicitly write down all of the subsets of {1, 2, 3}.

Proof. Here they are.

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

Can anyone see why I arranged them this way? �

6. If S is a set with n elements, how many different subsets does S have? [Hint: Compare
your answers from Problems 4 and 5. Apply your answer from Problem 2.]

Proof. The whole homework assignment was setting you up to answer this question. Let S be
a set with n elements. You should observe from Problems 4 and 5 that a subset of S is the
same thing as a function from S to {T, F}. (The elements inside the subset get sent to T
and the elements outside the subset get sent to F .) Therefore the number of subsets of S is
the same as the number of functions from S to {T, F}, which by Problem 2 is

#{T, F}#S = 2n.

We conclude that a set with n elements has exactly 2n different subsets. �

[Remark: When I said in Problem 6 that subsets of S and functions S → {T, F} are the “same
thing”, what I really meant is that there is a “1-to-1 correspondence” between them. We will
discuss the details of this concept later.]


