Let L_{n} be the maximum number of regions we can get by drawing n (infinite) lines in the plane. We showed in class that

$$
L_{n}=1+(1+2+3+\cdots+n)=1+\sum_{k=1}^{n} k=1+\frac{n(n+1)}{2}=\frac{n^{2}+n+2}{2} .
$$

1. Let f and g be two functions of a discrete variable n. We write $f(n) \sim g(n)$ (and we say that $f(n)$ is asymptotic to $g(n)$) if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

Show that $L_{n} \sim \frac{1}{2} n^{2}$.

Proof. Let $f(n)=L_{n}=\left(n^{2}+n+2\right) / 2$ and $g(n)=n^{2} / 2$. We want to show that $f(n) \sim g(n)$. By definition this means we must show that $\lim _{n \rightarrow \infty} f(n) / g(n)=1$. First we examine the function:

$$
\frac{f(n)}{g(n)}=\frac{\left(n^{2}+n+2\right) / 2}{n^{2} / 2}=\frac{n^{2}+n+2}{n^{2}}=1+\frac{1}{n}+\frac{2}{n^{2}} .
$$

Now we can compute the limit:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} & =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}+\frac{2}{n^{2}}\right) \\
& =\lim _{n \rightarrow \infty} 1+\lim _{n \rightarrow \infty} \frac{1}{n}+\lim _{n \rightarrow \infty} \frac{2}{n^{2}} \\
& =1+0+0 \\
& =1 .
\end{aligned}
$$

2. We proved in class that

$$
\sum_{k=1}^{n} k^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Use this formula to evaluate the sum $\sum_{k=1}^{n}\left(a+b k+c k^{2}\right)$, where a, b, c are arbitrary constants.

Proof. By rearranging the order of the sum and factoring out constant multiples we have

$$
\begin{aligned}
\sum_{k=1}^{n}\left(a+b k+c k^{2}\right) & =a \sum_{k=1}^{n} 1+b \sum_{k=1}^{n} k+c \sum_{k=1}^{n} k^{2} \\
& =a n+b \frac{n(n+1)}{2}+c \frac{n(n+1)(2 n+1)}{6} \\
& =\frac{n}{6}(6 a+3 b(n+1)+c(n+1)(2 n+1)) \\
& =\frac{n}{6}\left(6 a+3 b n+3 b+c\left(2 n^{2}+3 n+1\right)\right) \\
& =\frac{n}{6}\left((2 c) n^{2}+3(b+c) n+(6 a+3 b+c)\right) \\
& =\left(\frac{c}{3}\right) n^{3}+\left(\frac{b+c}{2}\right) n^{2}+\left(\frac{6 a+3 b+c}{6}\right) n .
\end{aligned}
$$

3. Now let P_{n} be the maximum number of 3 -dimensional regions we can get by cutting 3dimensional space with n infinite planes (i.e., the maximum number of pieces of cheese we can get using n cuts). You can assume that for all $n>0$ we have

$$
P_{n+1}=P_{n}+L_{n}
$$

(a) Use this recurrence to show that for all $n>0$ we have

$$
P_{n}=1+L_{0}+L_{1}+L_{2}+\cdots L_{n-1}=1+\sum_{k=0}^{n-1} L_{k}
$$

(b) Use the result of part (a) to show that for all $n>0$ we have

$$
P_{n}=\frac{n^{3}+5 n+6}{6} .
$$

[Hint: Use Problem 2.] It just so happens that this formula also works when $n=0$.
Proof. First I'll mention the recurrence $P_{n+1}=P_{n}+L_{n}$. Suppose we have n planes dividing 3D space into P_{n} 3D regions. Now we add an $(n+1)$-st plane. If we do this correctly (no multiple intersections and no parallel planes) then the first n planes will intersect our new plane in n lines and divide the new plane into L_{n} regions. This means the new plane passes through exactly L_{n} of the P_{n} 3D regions and cuts each of these in two. This creates L_{n} new 3D regions, so the total is now $P_{n}+L_{n}$. On the other hand, the number of regions created by $n+1$ planes (if done correctly) is P_{n+1}. Hence $P_{n+1}=P_{n}+L_{n}$.

For part (a), first note that $P_{0}=1$. Now we use the recurrence to expand:

$$
\begin{aligned}
P_{0} & =1 \\
P_{1} & =P_{0}+L_{0}=1+L_{0} \\
P_{2} & =P_{1}+L_{1}=\left(1+L_{0}\right)+L_{1} \\
P_{3} & =P_{2}+L_{2}=\left(1+L_{0}+L_{1}\right)+L_{2} \\
& \vdots \\
P_{n} & =1+L_{0}+L_{1}+L_{2}+\cdots+L_{n-1}=1+\sum_{k=0}^{n-1} L_{k} .
\end{aligned}
$$

Now we can use the formula $L_{k}=\left(k^{2}+k+2\right) / 2=k^{2} / 2+k / 2+1$ and the technique from Problem 2 to find a closed formula:

$$
\begin{aligned}
P_{n} & =1+\sum_{k=0}^{n-1}\left(\frac{1}{2} k^{2}+\frac{1}{2} k+1\right) \\
& =1+\frac{1}{2} \sum_{k=0}^{n-1} k^{2}+\frac{1}{2} \sum_{k=0}^{n-1} k+\sum_{k=0}^{n-1} 1 \\
& =1+\frac{1}{2} \sum_{k=1}^{n-1} k^{2}+\frac{1}{2} \sum_{k=1}^{n-1} k+\sum_{k=0}^{n-1} 1 \\
& =1+\frac{1}{2} \frac{(n-1)((n-1)+1)(2(n-1)+1)}{6}+\frac{1}{2} \frac{(n-1)((n-1)+1)}{2}+n \\
& =1+\frac{1}{2} \frac{n(n-1)(2 n-1)}{6}+\frac{1}{2} \frac{n(n-1)}{2}+n \\
& =n+1+\frac{n(n-1)}{2}\left(\frac{2 n-1}{6}+\frac{1}{2}\right) \\
& =n+1+\frac{n(n-1)}{2}\left(\frac{n+1}{3}\right) \\
& =\frac{1}{6}(6(n+1)+n(n-1)(n+1)) \\
& =\frac{1}{6}\left(6 n+6+n^{3}-n\right) \\
& =\frac{n^{3}+5 n+6}{6} .
\end{aligned}
$$

Jacob Steiner stopped with 3-dimensional cheese because in 1826 no one believed in 4-dimensional cheese. Today we do believe in 4 -dimensional cheese (at least I do). Let $f_{d}(n)$ be the maximum number of pieces obtained when we make $n(d-1)$-dimensional cuts of a d-dimensional cheese. The same geometric argument "should" work to prove

$$
f_{d}(n+1)=f_{d}(n)+f_{d-1}(n) .
$$

One can then use the recurrence to obtain the following nice formula:

$$
f_{d}(n)=1+n+\binom{n}{2}+\binom{n}{3}+\cdots+\binom{n}{d} .
$$

This formula was first written down by Ludwig Schläfli in the 1840s. We may return to it when we study binomial coefficients.

