Let L_{n} be the maximum number of regions we can get by drawing n (infinite) lines in the plane. We showed in class that

$$
L_{n}=1+(1+2+3+\cdots+n)=1+\sum_{k=1}^{n} k=1+\frac{n(n+1)}{2}=\frac{n^{2}+n+2}{2} .
$$

1. Let f and g be two functions of a discrete variable n. We write $f(n) \sim g(n)$ (and we say that $f(n)$ is asymptotic to $g(n))$ if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

Show that $L_{n} \sim \frac{1}{2} n^{2}$.
2. We proved in class that

$$
\sum_{k=1}^{n} k^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Use this formula to evaluate the sum $\sum_{k=1}^{n}\left(a+b k+c k^{2}\right)$, where a, b, c are arbitrary constants.
3. Now let P_{n} be the maximum number of 3 -dimensional regions we can get by cutting 3dimensional space with n infinite planes (i.e., the maximum number of pieces of cheese we can get using n cuts). You can assume that for all $n>0$ we have

$$
P_{n+1}=P_{n}+L_{n} .
$$

(a) Use this recurrence to show that for all $n>0$ we have

$$
P_{n}=1+L_{0}+L_{1}+L_{2}+\cdots L_{n-1}=1+\sum_{k=0}^{n-1} L_{k} .
$$

(b) Use the result of part (a) to show that for all $n>0$ we have

$$
P_{n}=\frac{n^{3}+5 n+6}{6} .
$$

[Hint: Use Problem 2.] It just so happens that this formula also works when $n=0$.

