1. Poker Hands. A standard deck contains 52 cards. Half the cards are red and half are black. A "poker hand" consists of 5 cards chosen at random from the deck.
(a) How many different poker hands are there?
(b) How many poker hands contain all red cards?
(c) How many poker hands contain 1 red and 4 black cards? [Hint: Choose the red card first, then choose the black cards.]
(a) The cards are unordered and may not be repeated. So the number of poker hands is

$$
\binom{52}{5}=\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=2,598,960
$$

(b) The number of ways to choose 5 red cards is

$$
\binom{26}{5}=\frac{26 \cdot 25 \cdot 24 \cdot 23 \cdot 22}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=65,780 .
$$

(c) There are 26 ways to choose a red card and there are $\binom{26}{4}$ ways to choose 4 black cards. The total number of choices is

$$
26 \times\binom{ 26}{4}=26 \times \frac{26 \cdot 25 \cdot 24 \cdot 23}{4 \cdot 3 \cdot 2 \cdot 1}=388,700 .
$$

Remark: More generally, the number of poker hands with k red and $5-k$ black cards is

$$
\binom{26}{k} \times\binom{ 26}{5-k} .
$$

By summing over all possible values of k we obtain an interesting identity:

$$
\begin{aligned}
(\text { total \# poker hands }) & =\sum_{k=0}^{5}(\# \text { hands with } k \text { red cards }) \\
\binom{52}{5} & =\sum_{k=0}^{5}\binom{26}{k}\binom{26}{5-k} .
\end{aligned}
$$

Even more generally, suppose there are n cards in the deck. Suppose that r cards are red and b cards are black, so that $r+b=n$, and suppose that a poker hand consists of h cards drawn at random. Then our identity becomes

$$
\binom{n}{h}=\sum_{k=0}^{h}\binom{r}{k}\binom{b}{h-k} .
$$

2. Double Counting. In this problem you will give two proofs of the identity

$$
k\binom{n}{k}=n\binom{n-1}{k-1} .
$$

(a) Prove the identity using pure algebra. [Hint: $n!=n \times(n-1)$!]
(b) In a certain classroom of n students we want to choose a committee of k students, one of which will be the president of the committee. Prove the identity by counting the possible choices in two different ways. [Hint: Will you choose the president before or after choosing the committee members?]
(a) Pure algebra:

$$
k\binom{n}{k}=\frac{k}{k!} \cdot \frac{n!}{(n-k)!}=\frac{1}{(k-1)!} \cdot \frac{n \cdot(n-1)!}{(n-k)!}=n \cdot \frac{(n-1)!}{(k-1)!(n-k)!}=n\binom{n-1}{k-1} .
$$

(b) Counting argument: Suppose we want to choose a committee of k students from a classroom of n students. One committee member will be the president. On the one hand, there are $\binom{n}{k}$ ways to choose the committee and then k ways to choose the president, for a total of

$$
k\binom{n}{k} \text { choices. }
$$

On the other hand, suppose we choose the president first. There are n ways to do this. Then we must choose the remaining $k-1$ committee members from the remaining $n-1$ students, and there are $\binom{n-1}{k-1}$ ways to do this. In total, we have

$$
n\binom{n-1}{k-1} \text { choices. }
$$

Since these two formulas count the same objects, they must be equal.
3. Trinomial Coefficients. Consider integers $i, j, k \geq 0$ such that $i+j+k=n$, and let N be the number of words that can be made with the letters

$$
\underbrace{a, a, \ldots, a}_{i \text { copies }}, \underbrace{b, b, \ldots,}_{j \text { copies }}, \underbrace{c, c, \ldots, c}_{k \text { copies }} .
$$

(a) Explain why $n!=N \times i!\times j!\times k!$.
(b) How many words can be made from the letters b, a, n, a, n, a ?
(a) Double counting: Suppose that the letters are labeled as

$$
a_{1}, a_{2}, \ldots, a_{i}, b_{1}, b_{2}, \ldots, b_{j}, c_{1}, c_{2}, \ldots, c_{k}
$$

Since these n letters are distinct, the number of ways to arrange them is $n!$. On the other hand, suppose that we start with one of the N unlabeled arrangements. Then there are i ! ways to put labels on the " a " s, j ! ways to put labels on the " b "s and k ! ways to put labels on the " c "s, for a total of

$$
N \times i!\times j!\times k!\text { arrangements }
$$

(b) If we have $i=1$ copy of " $b, " j=3$ copies of " n " and $k=2$ copies of " n," then the number of ways to arrange them is

$$
N=\frac{(i+j+k)!}{i!\times j!\times k!}=\frac{6!}{1!\times 2!\times 3!}=60 .
$$

Remark: More generally, consider an alphabet $a_{1}, a_{2}, \ldots, a_{\ell}$ of length ℓ. The number of words that can be made containing i_{k} copies of the letter " a_{k} " is

$$
\frac{\left(i_{1}+i_{2}+\cdots+i_{\ell}\right)!}{i_{1}!\times i_{2}!\times \cdots \times i_{\ell}!}
$$

4. Falling Factorial. For any number z and for any integer $k \geq 0$ we define the "falling factorial" notation $(z)_{k}:=z(z-1)(z-2) \cdots(z-k+1)$. If $n \geq 0$ is an integer, show that

$$
\binom{n}{k}=\frac{(n)_{k}}{k!} .
$$

Pure algebra: If n is a positive whole number then n ! exists and we can write

$$
\begin{aligned}
\frac{n!}{k!\times(n-k)!} & =\frac{n(n-1)(n-2) \cdots(n-k+1)(n-k)(n-k-1) \cdots 3 \cdot 2 \cdot 1}{k!\times(n-k)(n-\overline{k-1) \cdots 3 \cdot 2 \cdot 1}} \\
& =\frac{n(n-1)(n-2) \cdot \cdots(n-k+1)}{k!} \\
& =\frac{(n)_{k}}{k!} .
\end{aligned}
$$

5. Newton's Binomial Theorem. Consider any integer $k \geq 0$. Based on Problem 4, Isaac Newton defined the notation

$$
\binom{z}{k}:=\frac{(z)_{k}}{k!}
$$

for any number z (not just positive whole numbers), and he showed that for any number x with $|x|<1$ the following infinite series is convergent:

$$
(1+x)^{z}=1+\binom{z}{1} x+\binom{z}{2} x^{2}+\binom{z}{3} x^{3}+\cdots .
$$

(a) For any integers $n, k \geq 1$ show that

$$
\binom{-n}{k}=(-1)^{k}\binom{n+k-1}{k} .
$$

(b) Use Newton's formula to obtain an infinite series expansion for $(1+x)^{-2}$.
(a) Suppose that n is a positive whole number. Then by definition we have

$$
\begin{aligned}
\binom{-n}{k} & =\frac{(-n)_{k}}{k!} \\
& =\frac{(-n)(-n-1)(-n-2) \cdots(-n-k+1)}{k!} \\
& =\frac{(-1)(n)(-1)(n+1)(-1)(n+2) \cdots(-1)(n+k-1)}{k!} \\
& =\frac{(-1)^{k}(n+k-1) \cdots(n+2)(n+1)(n)}{k!} \\
& =\frac{(-1)^{k}(n+k-1) \cdots(n+2)(n+1)(n)(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1}{k!\times(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1} \\
& =(-1)^{k} \cdot \frac{(n+k-1)!}{k!(n-1)!} \\
& =(-1)^{k}\binom{n+k-1}{k} .
\end{aligned}
$$

(b) In the special case $n=2$ the formula from part (a) gives

$$
\binom{-2}{k}=(-1)^{k}\binom{2+k-1}{k}=(-1)^{k}\binom{k+1}{k}=(-1)^{k}(k+1) .
$$

Then Newton's formula tells us that

$$
\begin{aligned}
& (1+x)^{-2}=1+\binom{-2}{1} x+\binom{-2}{2} x^{2}+\binom{-2}{3} x^{3}+\cdots \\
& (1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+\cdots
\end{aligned}
$$

Remark: Here's an alternate way to get the same answer. Start with the "geometric series:"

$$
(1-x)^{-1}=1+x+x^{2}+x^{3}+x^{4}+\cdots .
$$

Differentiate both sides by x to get

$$
(1-x)^{-2}=0+1+2 x+3 x^{2}+4 x^{3}+\cdots
$$

Then substitute $x \mapsto-x$ to get

$$
\begin{aligned}
(1-(-x))^{-2} & =1+2(-x)+3(-x)^{2}+4(-x)^{3}+\cdots \\
(1+x)^{-2} & =1-2 x+3 x^{2}-4 x^{3}+\cdots
\end{aligned}
$$

