
Math 309 Fall 2022
Homework 5 Drew Armstrong

1. Vertex Degrees.

(a) Explain why 1, 2, 3, 4, 5, 6 cannot be the vertex degrees of a graph. [Hint: Handshake.]
(b) Explain why 1, 1, 1, 1, 1, 3 cannot be the vertex degrees of a connected graph. [Hint:

There are n = 6 vertices. Use Handshaking to find the number of edges e. A connected
graph must have n− 1 ≤ e.]

(c) Draw a non-connected graph with vertex degrees 1, 1, 1, 1, 1, 3.

(a): Here are two solutions.

First, if we assume that the graph is simple (no loops, no multiple edges) then since there
are 6 vertices, the maximum possible vertex degree is 5, since a vertex of degree 5 would be
connected to every other vertex. The second solution applies to any kind of graph.

Second, the Handshaking Lemma applies to any graph:1

2 · (# of edges) = the sum of vertex degrees.

A graph with vertex degrees 1, 2, 3, 4, 5, 6 would have

2 · (# of edges) = 1 + 2 + 3 + 4 + 5 + 6 = 21,

which is impossible.

(b): Any graph with vertex degrees 1, 1, 1, 1, 1, 3 must have n = 6 vertices and

e = (1 + 1 + 1 + 1 + 1 + 3)/2 = 4

edges. But a connected graph must have n− 1 ≤ e. Hence this graph cannot be connected.

(c): Here is a disconnected graph with vertex degrees 1, 1, 1, 1, 1, 3:

2. Complete Bipartite Graphs. The complete bipartite graph Km,n consists of m + n
vertices {u1, . . . , um, v1, . . . , vn} and mn edges {ui, vj} for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

(a) For a given graph G, let G′ denote the complementary graph with edges and non-edges
switched. Draw pictures of K3,4 and its complement K ′3,4.

(b) For all m and n, explain why

(# edges in Km,n) + (# edges in K ′m,n) =

(
m + n

2

)
.

(a): Here are pictures of K3,4 and K ′3,4:

1This formula allows loops and multiple edges, assuming that a loop adds 2 to the degree of its vertex.



Note that K3,4 has 3 · 4 = 12 edges and K ′3,4 has 9 edges.

(b): Here are two solutions.

In general, we note that K ′m,n is a disjoint union of Km and Kn:

Since Km has
(
m
2

)
edges (any two vertices are connected by an edge) we conclude that

(# edges in Km,n) + (# edges in K ′m,n) = mn +

(
m

2

)
+

(
n

2

)
= mn +

m(m− 1)(m− 1)!

2 · (m− 2)!
+

n(n− 1)(n− 2)!

2 · (n− 2)!

= mn +
m(m− 1)

2
+

n(n− 1)

2

=
2mn + m(m− 1) + n(n− 1)

2

=
mn + m2 −m + n2 − n

2
.



On the other hand, we have(
m + n

2

)
=

(m + n)(m + n− 1)(m + n− 2)!

2 · (m + n− 2)!

=
(m + n)(m + n− 1)

2

=
m2 + mn−m + mn + n2 − n

2

=
2mn + m2 −m + n2 − n

2
.

Alternatively, we can give a counting proof. The graph Km,n has m + n vertices, and there

are
(
m+n
2

)
possible edges among these vertices. Some of these edges occur in Km,n and the

rest occur in the complement K ′m,n. That’s it.

3. The Hypercube Graph. The hypercube graph Qn has 2n vertices, corresponding to the
binary strings (words from the alphabet {0, 1}) of length n. We draw an edge between two
vertices if the corresponding words differ in a single position.

(a) Draw the graphs Q1, Q2 and Q3.
(b) Compute the number of edges in Qn. [Hint: Use the Handshaking Lemma. Note that

each vertex of Qn has the same degree.]

(a): Here are the graphs Q1, Q2 and Q3, where I have labeled the vertices by their corre-
sponding binary strings:

(b): Every vertex in Qn corresponds to a binary string of length n. Let B be a binary string:

B = (b1, b2, . . . , bn) with b1, . . . , bn ∈ {0, 1}.
There are exactly n strings that differ from B in a single position, since each of the n bits can
be flipped. Hence every vertex in Qn has degree n. Since Qn has 2n vertices, each with degree
n, it follows from Handshaking that

2 · (# edges in Qn) = n + n + · · ·+ n︸ ︷︷ ︸
2n times

= n · 2n,

and hence

(# edges in Qn) =
n · 2n

2
= n · 2n−1.



4. Tree Degrees. Let T be a tree with n vertices, and let nk be the number of vertices of
degree k, so that n =

∑
k nk.

(a) Explain why
∑

k k · nk = 2(n− 1). [Hint: A tree with n vertices has n− 1 edges.]
(b) Use part (a) to prove that

n1 = 2 + n3 + 2n4 + 3n5 + 4n6 + · · · .
(c) An alkane is a saturated hydrocarbon molecule. We can think of this as a tree with

only vertices of degree 1 (hydrogen atoms) and degree 4 (carbon atoms). In this case,
use part (b) to show that

(# of hydrogen atoms) = 2 + 2(# of carbon atoms).

(a): Let e be the number of edges in T . Since there are k vertices with degree nk, the
Handshaking Lemma gives

2e = sum of vertex degrees

= 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n1 times

+ 2 + 2 + · · ·+ 2︸ ︷︷ ︸
n2 times

+ 3 + 3 + · · ·+ 3︸ ︷︷ ︸
n3 times

+ · · ·

= 1 · n1 + 2 · n2 + 3 · n3 + · · · .
The sum stops after a finite number of steps because T has finitely many vertices.

(b): We also know that e = n− 1,2 which is a property of trees, and n = n1 + n2 + · · · , since
nk is the number of vertices of degree k, and n is the total number of vertices. Combining
these with part (a) gives

2e = n1 + 2 · n2 + 3 · n3 + · · ·
2(n− 1) = n1 + 2 · n2 + 3 · n3 + · · ·

2n = 2 + n1 + 2 · n2 + 3 · n3 + · · ·
2(n1 + n2 + n3 + · · · ) = 2 + n1 + 2 · n2 + 3 · n3 + · · ·

2 · n1 = 2 + n1 + 0 · n2 + 1 · n3 + 2 · n4 + · · ·
n1 = 2 + n3 + 2 · n4 + 3 · n5 + · · · .

(c): A hydrocarbon molecule can be thought of as a graph with vertices of degree 1 (called
hydrogen atoms) and vertices of degree 4 (called carbon atoms). The molecule is called
“saturated” if the number of hydrogen atoms is as large as possible for the given number of
carbon atoms. It turns out that this implies no cycles and no multiple edges (double and
triple bonds), so the molecule must be a tree. In the formula from part (b) we have nk = 0
for all k except for 1 and 4, hence

n1 = 2 + n3 + 2 · n4 + 3 · n5 + · · ·
n1 = 2 + 0 + 2 · n4 + 3 · 0 + · · ·
n1 = 2 + 2 · n4

(# of hydrogen atoms) = 2 + 2(# of carbon atoms).

5. Planarity of Bipartite Graphs. Let G be a simple, bipartite graph (i.e., with no loops,
no multiple edges, and no cycles of odd length) with v vertices and e edges.

2Recall that any graph with k connected components satisfies n−k ≤ e, so that any connected graph satisfies
n− 1 ≤ e. A tree is a connected graph with the minimum possible number of edges.



(a) Suppose that G has a planar drawing with f faces. In this case, show that

2e ≥ 4f.

[Hint: By the Handshaking Lemma, the sum of the degrees of the faces equals 2e. By
our assumptions on G, each face in the drawing must have degree ≥ 4.]

(b) Combine (a) with Euler’s Formula v − e + f = 2 to show that

e ≤ 2v − 4.

(c) Use part (b) to prove that the complete bipartite graph K3,3 has no planar drawing.

(a): The Handshaking Lemma for planar graphs says that

2e =
∑

face degrees.

A graph without loops has no faces of degree 1 and a graph without multiple edges has no
faces of degree 2. Furthermore, a bipartite graph has no faces of odd degree, so every face in
a planar drawing of a simple, bipartite graph must have degree ≥ 4. It follows that

2e =
∑

face degrees

≥ 4 + 4 + · · ·+ 4︸ ︷︷ ︸
f times

= 4f.

(b): Combining part (a) with Euler’s formula v − e + f = 2 gives

4f ≤ 2e

2f ≤ e

2(2− v + e) ≤ e

4− 2v + 2e ≤ e

e ≤ 2v − 4.

In summary, any simple, bipartite graph that has a planar drawing must satisfy e ≤ 2v − 4.

(c): The complete bipartite graph K3,3 has v = 3 + 3 = 6 vertices and e = 3 · 3 = 9 edges, so
that the inequality e ≤ 2v − 4 is false. Hence K3,3 cannot possibly have a planar drawing.

Remark: K3,3 is sometimes called the utility graph, with three vertices representing houses
and the other three representing utilities (water, gas, electric). In the early 20th century,
Henry Dudeney posed the three utilities puzzle, which asks for a planar drawing connecting
each house to each utility. We just showed that this puzzle has no solution. More recently, the
puzzle has appeared on coffee mugs. In this case a drawing does exist if you use the handle.

6. Theorem on Friends and Strangers. Consider a complete graph K6, where each edge
is colored either red or blue.

(a) Pick a random vertex p. Show that there exist three other vertices a, b, c so that the
edges pa, pb, pc all have the same color. [Hint: There are 5 edges coming out of p.]

(b) Use part (a) to show that the graph contains a red triangle or a blue triangle (or both).
[Hint: Suppose that the edges pa, pb, pc are all red. If at least one of the edges ab, ac, bc
is red then the graph contains a red triangle. Otherwise . . . ]



(a): Pick a random vertex p and consider the 5 edges out of p. I claim that there exist three
of these edges with the same color. Indeed, if this were not true then we would have ≤ 2 red
edges and ≤ 2 blue edges, which don’t add up to 5:

(b): Without loss of generality,3 assume that there are 3 red edges coming out of p. Call them
pa, pb and pc. Now consider the three edges ab, ac and bc. If at least one of these edges is
red, then we obtain a red triangle:

Otherwise, all three of the edges ab, ac, bc are blue, in which case we must have a blue triangle:

Thus we have shown that a complete graph K6 with two edge colors must contain a monochro-
matic triangle.

Remark: A version of Ramsey’s Theorem says that for any integer n ≥ 1, there exists a
number R(n) such that any bicolored complete graph with at least R(n) edges must have a
monochromatic copy of Kn inside it. We just proved that R(3) = 6. Wikipedia tells me that
R(4) = 18. The number R(5) is still unknown! It is somewhere between 43 and 48.

3We use this phrase when a proof splits into two cases that are basically equivalent. The other case here is
when there are 3 blue edges coming out of p. The proof of this case is exactly the same as the proof given here,
except that the colors are switched. It would be tedious to write out the same proof twice.


