1. Write It Down! In each case, explicitly write down all the possibilities.
(a) Ordered selections of 3 things from the set $\{a, b, c, d\}$. No repetition allowed.
(b) Unordered selections of 2 things from the set $\{a, b, c, d, e, f\}$. No repetition allowed.
(c) Non-negative integer solutions $c, v, s \geq 0$ to the equation $c+v+s=4$. [Hint: There are three flavors of ice cream. You want to buy four gallons.]
(a): There are ${ }_{4} P_{3}=4 \cdot 3 \cdot 2=24$ choices:

$a b c$	$a b d$	$a c d$	$b c d$
$a c b$	$a d b$	$a d c$	$b d c$
$b a c$	$b a d$	$c a d$	$c b d$
$b c a$	$b d a$	$c d a$	$c d b$
$c a b$	$d a b$	$d a c$	$d b c$
$c b a$	$d b a$	$d c a$	$d c b$

Remark: There are ${ }_{4} C_{3}=\binom{4}{3}=4$ unordered choices:
abc abd acd bcd
Note that ${ }_{4} P_{3}={ }_{4} C_{3} \cdot 3$! since there are 3 ! $=6$ ways to order each unordered choice. More generally, we have ${ }_{n} P_{k}={ }_{n} C_{k} \cdot k$! for any $0 \leq k \leq n$. This is how we computed ${ }_{n} C_{k}$:

$$
{ }_{n} C_{k}=\frac{1}{k!} \cdot{ }_{n} P_{k}=\frac{1}{k!}(n)(n-1) \cdots(n-k+1)=\frac{n!}{k!(n-k)!}=\binom{n}{k} .
$$

(b): Unordered selections of 2 things from $\{a, b, c, d, e, f\}$ are the same as subsets of size 2 . There are $\binom{6}{2}=15$ such subsets:

Note: To save space I wrote $c d$ instead of $\{c, d\}$, etc.
(c): A solution to $c+v+s=4$ with $c, v, s \geq 0$ is the same as a selection of 4 gallons of ice cream from the 3 flavors \{chocolate, vanilla, strawberry\}. That is, we are selecting 4 things from 3 things, where repetition is allowed and order doesn't matter. A choice can be encoded as a sequence of "stars and bars", with 4 stars and 2 bars:

$$
\underbrace{* \cdots *}_{c \text { times }}|\underbrace{* \cdots *}_{v \text { times }}| \underbrace{\cdots \cdots *}_{s \text { times }} .
$$

There are $\binom{6}{2}=\binom{6}{4}=15$ such sequences:

$$
\begin{array}{llll}
\mid * * * * & *|\mid * * * & * *|\mid * * & * * *|\mid * \\
|* * * *| \mid \\
|*| * * * & *|*| * * & * *|*| * & * * *|*| \\
|* *| * * & *|* *| * & * *|* *| & \\
|* * *| * & *|* * *| & & \\
|* * * *| & &
\end{array}
$$

corresponding to 15 solutions for (c, v, s) :

$(0,0,4)$	$(1,0,3)$	$(2,0,2)$	$(3,0,1)$	$(4,0,0)$
$(0,1,3)$	$(1,1,2)$	$(2,1,1)$	$(3,1,0)$	
$(0,2,2)$	$(1,2,1)$	$(2,2,0)$		
$(0,3,1)$	$(1,3,0)$			
$(0,4,0)$				

2. Just the Numbers, Please. Count the possibilities in each case.
(a) Phone numbers consisting of 7 digits.
(b) Rearrangements of the letters m, a, m, m, a, l.
(c) Poker hands, consisting of 5 cards drawn from a deck of 52.
(d) Non-negative integer solutions $x+y+z \geq 0$ to the equation $x+y+z=7$.
(a): The number of 7-digit phone numbers is

$$
\underbrace{10}_{\text {1st digit }} \times \underbrace{10}_{2 \text { nd digit }} \times \cdots \times \underbrace{10}_{7 \text { th digit }}=10^{7}
$$

(b): The number of arrangements of the letters m, a, m, m, a, l is

$$
\frac{6!}{3!2!1!}=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 2 \cdot 1 \cdot 1}=60
$$

Remark: More generally, the number of words of length n containing k_{1} copies of the letter a_{1}, k_{2} copies of the letter a_{2}, \ldots, and k_{ℓ} copies of the letter a_{ℓ} is the multinomial coefficient:

$$
\binom{n}{k_{1}, k_{2}, \ldots, k_{\ell}}=\frac{n!}{k_{1}!k_{2}!\cdots k_{\ell}!}
$$

When using this notation we always assume that $k_{1}+k_{2}+\cdots+k_{\ell}=n$.
(c): A poker hand is a collection of 5 unordered cards, chosen without replacement from a deck of 52 . The number of choices is

$$
\binom{52}{5}=\frac{52!}{5!47!}=\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=2,598,960
$$

(d): Compare to Problem 1(c). A non-negative integer solution to the equation $x+y+z=7$ corresponds to a sequence of 7 stars and 2 bars. The number of such sequences is

$$
\binom{9}{2}=\binom{9}{7}=\frac{9!}{2!7!}=\frac{9 \cdot 8}{2 \cdot 1}=36
$$

Remark: More generally, a non-negative integer solution to $x_{1}+\cdots+x_{n}=k$ corresponds to a sequence of k stars and $n-1$ bars. The number of such sequences is

$$
\binom{k+(n-1)}{k, n-1}=\binom{n+k-1}{k}=\binom{n+k-1}{n-1}=\cdots
$$

The previous calculation corresponds to $k=7$ and $n=3$.
3. Vandermonde Convolution. For any positive integers r, g, n we hav ${ }^{1}$

$$
\sum_{k}\binom{r}{k}\binom{g}{n-k}=\binom{r+g}{n}
$$

[^0](a) Give a counting proof of this identity. [Hint: There are r red balls and g green balls in a bowl. You reach in and grab a collection of n unordered balls.]
(b) Use the identity to prove that $\binom{n}{0}^{2}+\binom{n}{1}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n}$.
(a): There are r red balls and g green balls in a bowl. Let S be the set of possible choices of n balls from the bowl. On the one hand we have
$$
\# S=\binom{r+g}{n}
$$

On the other hand, let S_{k} be the set of possible choices consisting of k red balls and $n-k$ green balls. Note that we have a disjoint union:

$$
S=S_{0} \cup S_{1} \cup \cdots \cup S_{r} .
$$

Indeed, each choice of n balls contains some number of red balls. It follows that

$$
\# S=\# S_{0}+\# S_{1}+\cdots+\# S_{r}
$$

But we also have

$$
\# S_{k}=\underbrace{\binom{r}{k}}_{\begin{array}{c}
\text { number of ways to } \\
\text { choose } k \text { red balls }
\end{array}} \times \underbrace{\binom{g}{n-k}}_{\begin{array}{c}
\text { number of ways to } \\
\text { choose } n-k \text { green balls }
\end{array}} .
$$

We conclude that

$$
\binom{r+g}{n}=\sum_{k}\binom{r}{k}\binom{g}{n-k}
$$

Only finitely many terms in the sum are nonzero \square^{2}
4. Trinomial Recurrence. The trinomial coefficients are defined as follows:

$$
\binom{n}{i, j, k}:=\frac{n!}{i!j!k!}, \quad \text { where we must have } i+j+k=n \text {. }
$$

Use algebra to prove the trinomial recurrence relation:

$$
\binom{n}{i, j, k}=\binom{n-1}{i-1, k, j}+\binom{n-1}{i, j-1, k}+\binom{n-1}{i, j, k-1}
$$

We will repeatedly use the fact that $m(m-1)!=m!$. Note that

$$
\begin{aligned}
& \binom{n-1}{i-1, k, j}+\binom{n-1}{i, j-1, k}+\binom{n-1}{i, j, k-1} \\
& =\frac{(n-1)!}{(i-1)!j!k!}+\frac{(n-1)!}{i!(j-1)!k!}+\frac{(n-1)!}{i!j!(k-1)!} \\
& =\frac{i}{i} \cdot \frac{(n-1)!}{(i-1)!j!k!}+\frac{j}{j} \cdot \frac{(n-1)!}{i!(j-1)!k!}+\frac{k}{k} \cdot \frac{(n-1)!}{i!j!(k-1)!} \\
& =\frac{i(n-1)!}{i(i-1)!j!k!}+\frac{j(n-1)!}{i!j(j-1)!k!}+\frac{k(n-1)!}{i!j!k(k-1)!} \\
& =\frac{i(n-1)!}{i!j!k!}+\frac{j(n-1)!}{i!j!k!}+\frac{k(n-1)!}{i!j!k!}
\end{aligned}
$$

[^1]\[

$$
\begin{aligned}
& =\frac{i(n-1)!+j(n-1)!+k(n-1)!}{i!j!k!} \\
& =\frac{(i+j+k)(n-1)!}{i!j!k!} \\
& =\frac{n(n-1)!}{i!j!k!} \\
& =\frac{n!}{i!j!k!} \\
& =\binom{n}{i, j, k} .
\end{aligned}
$$
\]

5. Double Factorial. For a positive integer n we define the double factorial as follows:

$$
n!!= \begin{cases}n(n-2)(n-4) \cdots 4 \cdot 2 & \text { if } n \text { is even } \\ n(n-2)(n-4) \cdots 3 \cdot 1 & \text { if } n \text { is odd }\end{cases}
$$

(a) For any $m \geq 1$, show that $(2 m)!$! $(2 m-1)$!! $=(2 m)$!.
(b) For any $m \geq 1$, show that $(2 m)!$! $=2^{m} m$!.
(c) Combine (a) and (b) to show that $(2 m-1)!!=\frac{(2 m)!}{2^{m} m!}$.
(a): We have

$$
\begin{aligned}
(2 m)! & =(2 m)(2 m-1)(2 m-2)(2 m-3) \cdots 4 \cdot 3 \cdot 2 \cdot 1 \\
& =[(2 m)(2 m-2) \cdots 4 \cdot 2][(2 m-1)(2 m-3) \cdots \cdot 3 \cdot 1] \\
& =(2 m)!!(2 m-1)!!.
\end{aligned}
$$

(b): We have

$$
\begin{aligned}
(2 m)!! & =(2 m)(2 m-2)(2 m-4) \cdots 4 \cdot 2 \\
& =[2(m)][2(m-1)][2(m-2)] \cdots[2(2)][2(1)] \\
& =2^{m}(m)(m-1)(m-2) \cdots 2 \cdot 1 \\
& =2^{m} m!
\end{aligned}
$$

(c): We have

$$
\begin{align*}
(2 m)!!(2 m-1)!! & =(2 m)! \tag{a}\\
(2 m-1)!! & =(2 m)!/(2 m)!! \\
(2 m-!)!! & =\frac{(2 m)!}{2^{m} m!} \tag{b}
\end{align*}
$$

6. Generalized Binomial Coefficients. For any number z and positive integer k we define

$$
\binom{z}{k}=\frac{(z)_{k}}{k!}=\frac{z(z-1) \cdots(z-k+1)}{k!} .
$$

This formula agrees with the usual binomial coefficients when z is a positive integer, but it makes sense even when z is negative or when z is a fraction.
(a) Use the formula to compute $\binom{-3}{4}$.
(b) Give an algebraic proof that

$$
\binom{-z}{k}=(-1)^{k}\binom{z+k-1}{k} .
$$

(c) Give an algebraic proof that

$$
\binom{1 / 2}{k}=\frac{(-1)^{k-1}}{k \cdot 2^{2 k-1}} \cdot\binom{2(k-1)}{k-1} .
$$

[Hint: At some point you will need to use Problem 5(c) with $m=k-1$.]
(a): We have

$$
\binom{-3}{4}=\frac{(-3)_{4}}{4!}=\frac{(-3)(-4)(-5)(-6)}{4 \cdot 3 \cdot 2 \cdot 1}=15 .
$$

(b): We have

$$
\begin{aligned}
\binom{-n}{k} & =\frac{(-n)_{k}}{k!} \\
& =\frac{1}{k!}(-n)(-n-1)(-n-2) \cdots(-n-k+1) \\
& =\frac{1}{k!}[(-1)(n)][(-1)(n+1)][(-1)(n+2)] \cdots[(-1)(n+k-1)] \\
& =\frac{(-1)^{k}}{k!}(n)(n+1)(n+2) \cdots(n+k-1) \\
& =\frac{(-1)^{k}}{k!}(n+k-1)(n+k-2) \cdots(n+1)(n) \\
& =\frac{(-1)^{k}}{k!}(n+k-1)_{k} \\
& =(-1)^{k} \frac{(n+k-1)_{k}}{k!} \\
& =(-1)^{k}\binom{n+k-1}{k} .
\end{aligned}
$$

(c): We have

$$
\begin{aligned}
\binom{1 / 2}{k} & =\frac{1}{k!}(1 / 2)_{k} \\
& =\frac{1}{k!}(1 / 2)(1 / 2-1)(1 / 2-2) \cdots(1 / 2-k+1) \\
& =\frac{1}{k!}(1 / 2)(-1 / 2)(-3 / 2) \cdots((-2 k+3) / 2) \\
& =\frac{1}{k!}[(1 / 2)(1)][(1 / 2)(-1)][(1 / 2)(-3)] \cdots[(1 / 2)(-2 k+3)] \\
& =\frac{1}{k!}\left(\frac{1}{2}\right)^{k}(1)(-1)(-3) \cdots(-2 k+3) \\
& =\frac{1}{k!}\left(\frac{1}{2}\right)^{k}(-1)(-3) \cdots(-(2(k-1)-1))
\end{aligned}
$$

6

$$
\begin{align*}
& =\frac{1}{k!}\left(\frac{1}{2}\right)^{k}(-1)^{k-1}(1)(3) \cdots(2(k-1)-1) \\
& =\frac{(-1)^{k-1}}{2^{k} k!}(1)(3) \cdots(2(k-1)-1) \\
& \left.=\frac{(-1)^{k-1}}{2^{k} k!}(2(k-1))-1\right) \cdots(3)(1) \\
& =\frac{(-1)^{k-1}}{2^{k} k!}(2(k-1)-1)!! \\
& =\frac{(-1)^{k-1}}{2^{k} k!} \cdot \frac{(2(k-1))!}{2^{k-1}(k-1)!} \tag{c}\\
& =\frac{(-1)^{k-1}}{2^{k} 2^{k-1} k(k-1)!} \cdot \frac{(2(k-1))!}{(k-1)!} \\
& =\frac{(-1)^{k-1}}{k \cdot 2^{2 k-1}} \cdot \frac{(2(k-1))!}{(k-1)!(k-1)!} \\
& =\frac{(-1)^{k-1}}{k \cdot 2^{2 k-1}} \cdot\binom{2(k-1)}{k-1} .
\end{align*}
$$

That was fun.
Remark: Combining this calculation with Newton's binomial theorem gives us the power series expansion of $\sqrt{1+x}$ for $|x|<1$:

$$
\begin{aligned}
\sqrt{1+x} & =(1+x)^{1 / 2} \\
& =\sum_{k \geq 0}\binom{1 / 2}{k} \cdot x^{k} \\
& =\sum_{k \geq 0} \frac{(-1)^{k-1}}{k \cdot 2^{2 k-1}} \cdot\binom{2(k-1)}{k-1} \cdot x^{k} \\
& =1+\frac{1}{2} \cdot x-\frac{1}{8} \cdot x^{2}+\frac{1}{16} \cdot x^{3}-\frac{5}{128} \cdot x^{4}+\frac{7}{256} \cdot x^{5}-\frac{21}{1024} \cdot x^{6}+\cdots
\end{aligned}
$$

[^0]: ${ }^{1}$ We sum over all integers k, but only finitely many summands will be non-zero.

[^1]: ${ }^{2}$ Recall that we define $\binom{a}{b}=0$ when $b<0$ or $b>a$. Without this notational convenience, we must specify that $0 \leq k, k \leq r, k \leq n$ and $n-k \leq g$, so that $\max \{0, n-g\} \leq k \leq \min \{r, n\}$, which is quite annoying to say.

