Math 309 Fall 2022
Homework 4 Drew Armstrong

1. Write It Down! In each case, explicitly write down all the possibilities.

(a) Ordered selections of 3 things from the set {a,b,c,d}. No repetition allowed.

(b) Unordered selections of 2 things from the set {a,b,c,d, e, f}. No repetition allowed.

(c) Non-negative integer solutions ¢,v,s > 0 to the equation ¢ + v + s = 4. [Hint: There
are three flavors of ice cream. You want to buy four gallons.]

(a): There are 4P3 =4 -3 -2 = 24 choices:

abc abd acd bed
acb adb adec bdc
bac bad cad cbd
bca bda cda cdb
cab dab dac dbc
cba dba dca dcb

Remark: There are 4C3 = (g) = 4 unordered choices:
abc abd acd bed

Note that 4P3 = 4C35 - 3! since there are 3! = 6 ways to order each unordered choice. More
generally, we have ,, P, = ,C} - k! for any 0 < k < n. This is how we computed ,C:

1 1 n! n
an:H-nP]f:E(n)(n—l)“-(n—kﬁ-l):m: <k‘>

(b): Unordered selections of 2 things from {a,b,c,d, e, f} are the same as subsets of size 2.

There are (g) = 15 such subsets:

ab bc cd de ef

ac bd ce df
ad be cf
ae bf

af

Note: To save space I wrote cd instead of {c,d}, etc.

(c): A solution to ¢ +v + s = 4 with ¢,v,s > 0 is the same as a selection of 4 gallons of ice
cream from the 3 flavors {chocolate, vanilla, strawberry}. That is, we are selecting 4 things
from 3 things, where repetition is allowed and order doesn’t matter. A choice can be encoded
as a sequence of “stars and bars”, with 4 stars and 2 bars:

s

— "~~~

c times v times s times
There are (g) = (2) = 15 such sequences:
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corresponding to 15 solutions for (¢, v, s):
(0,0,4) (1,0,3) (2,0,2) (3,0,1) (4,0,0)
0,1,3) (1,1,2) (2,1,1) (3,1,0)
(07 2, 2) (17 2, 1) (27 2, O)
(0,3,1) (1,3,0)
(0,4,0)

2. Just the Numbers, Please. Count the possibilities in each case.

(a) Phone numbers consisting of 7 digits.

(b) Rearrangements of the letters m,a, m,m,a,l.

(c) Poker hands, consisting of 5 cards drawn from a deck of 52.

(d) Non-negative integer solutions x + y + z > 0 to the equation z +y + 2z = 7.

(a): The number of 7-digit phone numbers is

10 x 10 x---x 10 =10".
~—~— ~—~— ~—
1st digit  2nd digit 7th digit

(b): The number of arrangements of the letters m,a,m,m,a,l is
6! 6-5-4-3-2-1

2l 3.2-1-2-1-1

Remark: More generally, the number of words of length n containing ki copies of the letter
a1, ko copies of the letter ao, ..., and ky copies of the letter ay is the multinomial coefficient:

60.

n _ n!
ki,ko,... ky _kl'kQ'k‘g'
When using this notation we always assume that k; +ka + - -+ kp = n.

(c): A poker hand is a collection of 5 unordered cards, chosen without replacement from a
deck of 52. The number of choices is

52\ 52! 52-51-50-49-48
5) 5471 5.4.3.2-1

= 2,598, 960.

(d): Compare to Problem 1(c). A non-negative integer solution to the equation z+y+2 =7
corresponds to a sequence of 7 stars and 2 bars. The number of such sequences is

9 9 9! 9-8
<2)—(7>—m—2.1—36-

Remark: More generally, a non-negative integer solution to xy + - - - + x,, = k corresponds to
a sequence of k stars and n — 1 bars. The number of such sequences is

E+(n—-1)\ (n+k-1\ (n+k-1\
k,n—1 N k N n—1 N
The previous calculation corresponds to £ =7 and n = 3.

3. Vandermonde Convolution. For any positive integers r, g,n we haveE|

(6= 000)

lWe sum over all integers k, but only finitely many summands will be non-zero.
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(a) Give a counting proof of this identity. [Hint: There are r red balls and g green balls
in a bowl. You reach in and grab a collection of n unordered balls.]

(b) Use the identity to prove that (3)2 + (T)2 +-+ (n)2 = (2”)

n n

(a): There are r red balls and g green balls in a bowl. Let S be the set of possible choices
of n balls from the bowl. On the one hand we have

#S = <’" M 9).
n
On the other hand, let Si be the set of possible choices consisting of k red balls and n — &
green balls. Note that we have a disjoint union:
S=5USU---US§s,..
Indeed, each choice of n balls contains some number of red balls. It follows that
#S = S0 + #51 + - + #5r.

But we also have

r g
S =
# k n—=k
—~— —_—
number of ways to number of ways to

choose k red balls choose n — k green balls

()=S0

Only finitely many terms in the sum are nonzeroﬂ

We conclude that

4. Trinomial Recurrence. The trinomial coeflicients are defined as follows:
|
) n = L, where we must have i + 7 + k = n.
1,5,k i1k

Use algebra to prove the trinomial recurrence relation:

n B n—1 n n—1 n n—1
i7j7k; B Z—l,k,] Zvj_lak Za.]ak_l '
We will repeatedly use the fact that m(m — 1)! = m!. Note that

n—1 n—1 n—1

<i - 1’k7j) " (Zaj - 1vk> " <iajak_ 1)

(n—1)! (n—1)! N (n—1)!
(e =Dk (G — 1)k gk —1)!
i (n-1)! j (n-1) +ﬁ. (n—1)!
i (=1 g A -D% kil (k- 1)!

i(n—1)! jn—1)! k(n —1)!
i(i — DKL dli(y — Dk dlylk(k —1)!
_in—=1)! -1 k(n—1)!

iljk! ilglk! ilglk!

2Recall that we define (Z) =0 when b < 0 or b > a. Without this notational convenience, we must specify
that 0 < k, k <7,k <nand n—k < g, so that max{0,n — g} <k < min{r,n}, which is quite annoying to say.
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N iljlk!
~ n(n—1)!
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n!
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5. Double Factorial. For a positive integer n we define the double factorial as follows:

Al — nn—2)(n—4)---4-2 if nis even,
O n(n—2)(n—4)---3-1 if nis odd.
(a) For any m > 1, show that (2m)!!(2m — 1)!! = (2m)!.
(b) For any m > 1, show that (2m)!! = 2"m!.
(c) Combine (a) and (b) to show that (2m — 1)!! = (2m)!.

2mm)

(a): We have
2m)! = (2m)2m —-1)(2m —-2)(2m —-3)---4-3-2-1
=[2m)2m—2)---4-2][2m —-1)(2m —3)----3-1]
= (2m)!1(2m — 1)IL
(b): We have
Cm)!!=(2m)2m —2)(2m —4)---4-2
= [2(m)][2(m = D]2(m = 2)] - - [2(2)][2(1)]
=2"(m)(m—-1)(m—2)----2-1
=2"ml.
(c): We have
2m)!(2m — D! = (2m)! (a)
(2m — D!l = (2m)!/(2m)!
(2m-yn = 2L ()

6. Generalized Binomial Coefficients. For any number z and positive integer k we define
2\ (2  z2z-1)-- (z—k—l—l)
k) kO k!

This formula agrees with the usual binomial coefficients when z is a positive integer, but it
makes sense even when z is negative or when z is a fraction.

(a) Use the formula to compute (13).



(b) Give an algebraic proof that

()= ()

(c) Give an algebraic proof that

(1) - e (4,

[Hint: At some point you will need to use Problem 5(c) with m =k — 1.]

(a): We have
=3\ _ (=3)a _ (=3)(=4)(=5)(=6)
<4>_ 4!4_ 321
(b): We have
—n\ _ (=n)
(V) -
- %(—n)(—n ) (=n—2) e (—n— k4 1)
= %[(—1)(?1)][(—1)(” + DD +2)]---[(=1)(n + &k —1)]
1)k
= C L ) 2) (k- )
(=D*
= n+k—1)(n+k—=2)---(n+1)(n)
- (_kll)k (n+k—1)
(n+k—1
— (_1)k k! )k
n+k—1
by
(c): We have

(2) = Lo

_ %(1/2)(1/2 S D1/2-2)(1)2— k+1)
. %(1/2)(—1/2)(—3/2) - ((—2k+3)/2)

= L 0/2)ONA/2DIA/2(3) - [(1/2)(~2% +3)

k
i (3) OEDE -2k

k
-1 (;) (~1)(=3) -+ (—(2(k — 1) — 1))



k-1

_ (21’€)l<:!(1)(3) e (2(k—1)—1)
(-1

= o 2k =1) = 1) 3)(1)
_1)k—1

_ ;k)k! 20k —1) = 1)1

Dkt (2(k —1))!
= ( 2k)l<:! . Z(k(l(k _)1))! Problem 5(c)
_ (=pHt! (2(k—1))!
Tokoklg(k— 1) (k—1)!
=DM 2k 1))
T k221 (k= 1)k — 1)

That was fun.

Remark: Combining this calculation with Newton’s binomial theorem gives us the power series
expansion of /1 + z for |z| < 1:

Vitz=(1+z)?
> (%)

k>0
(-1 2k-1)\
:Zk.QQk—l' E—1 "L
k>0
1 1 1 5 7 21
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