
Math 309 Fall 2022
Homework 4 Drew Armstrong

1. Write It Down! In each case, explicitly write down all the possibilities.

(a) Ordered selections of 3 things from the set {a, b, c, d}. No repetition allowed.
(b) Unordered selections of 2 things from the set {a, b, c, d, e, f}. No repetition allowed.
(c) Non-negative integer solutions c, v, s ≥ 0 to the equation c + v + s = 4. [Hint: There

are three flavors of ice cream. You want to buy four gallons.]

(a): There are 4P3 = 4 · 3 · 2 = 24 choices:

abc abd acd bcd
acb adb adc bdc
bac bad cad cbd
bca bda cda cdb
cab dab dac dbc
cba dba dca dcb

Remark: There are 4C3 =
(
4
3

)
= 4 unordered choices:

abc abd acd bcd

Note that 4P3 = 4C3 · 3! since there are 3! = 6 ways to order each unordered choice. More
generally, we have nPk = nCk · k! for any 0 ≤ k ≤ n. This is how we computed nCk:

nCk =
1

k!
· nPk =

1

k!
(n)(n− 1) · · · (n− k + 1) =

n!

k!(n− k)!
=

(
n

k

)
.

(b): Unordered selections of 2 things from {a, b, c, d, e, f} are the same as subsets of size 2.

There are
(
6
2

)
= 15 such subsets:

ab bc cd de ef
ac bd ce df
ad be cf
ae bf
af

Note: To save space I wrote cd instead of {c, d}, etc.

(c): A solution to c + v + s = 4 with c, v, s ≥ 0 is the same as a selection of 4 gallons of ice
cream from the 3 flavors {chocolate, vanilla, strawberry}. That is, we are selecting 4 things
from 3 things, where repetition is allowed and order doesn’t matter. A choice can be encoded
as a sequence of “stars and bars”, with 4 stars and 2 bars:

∗ · · · ∗︸ ︷︷ ︸
c times

| ∗ · · · ∗︸ ︷︷ ︸
v times

| ∗ · · · ∗︸ ︷︷ ︸
s times

.

There are
(
6
2

)
=
(
6
4

)
= 15 such sequences:

|| ∗ ∗ ∗ ∗ ∗|| ∗ ∗∗ ∗ ∗ || ∗ ∗ ∗ ∗ ∗||∗ ∗ ∗ ∗ ∗ ||
| ∗ | ∗ ∗∗ ∗| ∗ | ∗ ∗ ∗ ∗ | ∗ |∗ ∗ ∗ ∗| ∗ |
| ∗ ∗| ∗ ∗ ∗| ∗ ∗|∗ ∗ ∗ | ∗ ∗|
| ∗ ∗ ∗ |∗ ∗| ∗ ∗ ∗ |
| ∗ ∗ ∗ ∗|
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corresponding to 15 solutions for (c, v, s):

(0, 0, 4) (1, 0, 3) (2, 0, 2) (3, 0, 1) (4, 0, 0)
(0, 1, 3) (1, 1, 2) (2, 1, 1) (3, 1, 0)
(0, 2, 2) (1, 2, 1) (2, 2, 0)
(0, 3, 1) (1, 3, 0)
(0, 4, 0)

2. Just the Numbers, Please. Count the possibilities in each case.

(a) Phone numbers consisting of 7 digits.
(b) Rearrangements of the letters m, a,m,m, a, l.
(c) Poker hands, consisting of 5 cards drawn from a deck of 52.
(d) Non-negative integer solutions x + y + z ≥ 0 to the equation x + y + z = 7.

(a): The number of 7-digit phone numbers is

10︸︷︷︸
1st digit

× 10︸︷︷︸
2nd digit

× · · · × 10︸︷︷︸
7th digit

= 107.

(b): The number of arrangements of the letters m, a,m,m, a, l is

6!

3!2!1!
=

6 · 5 · 4 · 3 · 2 · 1
3 · 2 · 1 · 2 · 1 · 1

= 60.

Remark: More generally, the number of words of length n containing k1 copies of the letter
a1, k2 copies of the letter a2, . . . , and k` copies of the letter a` is the multinomial coefficient:(

n

k1, k2, . . . , k`

)
=

n!

k1!k2! · · · k`!
.

When using this notation we always assume that k1 + k2 + · · ·+ k` = n.

(c): A poker hand is a collection of 5 unordered cards, chosen without replacement from a
deck of 52. The number of choices is(

52

5

)
=

52!

5!47!
=

52 · 51 · 50 · 49 · 48

5 · 4 · 3 · 2 · 1
= 2, 598, 960.

(d): Compare to Problem 1(c). A non-negative integer solution to the equation x+ y + z = 7
corresponds to a sequence of 7 stars and 2 bars. The number of such sequences is(

9

2

)
=

(
9

7

)
=

9!

2!7!
=

9 · 8
2 · 1

= 36.

Remark: More generally, a non-negative integer solution to x1 + · · ·+ xn = k corresponds to
a sequence of k stars and n− 1 bars. The number of such sequences is(

k + (n− 1)

k, n− 1

)
=

(
n + k − 1

k

)
=

(
n + k − 1

n− 1

)
= · · ·

The previous calculation corresponds to k = 7 and n = 3.

3. Vandermonde Convolution. For any positive integers r, g, n we have1∑
k

(
r

k

)(
g

n− k

)
=

(
r + g

n

)
.

1We sum over all integers k, but only finitely many summands will be non-zero.
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(a) Give a counting proof of this identity. [Hint: There are r red balls and g green balls
in a bowl. You reach in and grab a collection of n unordered balls.]

(b) Use the identity to prove that
(
n
0

)2
+
(
n
1

)2
+ · · ·+

(
n
n

)2
=
(
2n
n

)
.

(a): There are r red balls and g green balls in a bowl. Let S be the set of possible choices
of n balls from the bowl. On the one hand we have

#S =

(
r + g

n

)
.

On the other hand, let Sk be the set of possible choices consisting of k red balls and n− k
green balls. Note that we have a disjoint union:

S = S0 ∪ S1 ∪ · · · ∪ Sr.

Indeed, each choice of n balls contains some number of red balls. It follows that

#S = #S0 + #S1 + · · ·+ #Sr.

But we also have

#Sk =

(
r

k

)
︸︷︷︸

number of ways to
choose k red balls

×
(

g

n− k

)
︸ ︷︷ ︸

number of ways to
choose n− k green balls

.

We conclude that (
r + g

n

)
=
∑
k

(
r

k

)(
g

n− k

)
.

Only finitely many terms in the sum are nonzero.2

4. Trinomial Recurrence. The trinomial coefficients are defined as follows:(
n

i, j, k

)
:=

n!

i!j!k!
, where we must have i + j + k = n.

Use algebra to prove the trinomial recurrence relation:(
n

i, j, k

)
=

(
n− 1

i− 1, k, j

)
+

(
n− 1

i, j − 1, k

)
+

(
n− 1

i, j, k − 1

)
.

We will repeatedly use the fact that m(m− 1)! = m!. Note that(
n− 1

i− 1, k, j

)
+

(
n− 1

i, j − 1, k

)
+

(
n− 1

i, j, k − 1

)
=

(n− 1)!

(i− 1)!j!k!
+

(n− 1)!

i!(j − 1)!k!
+

(n− 1)!

i!j!(k − 1)!

=
i

i
· (n− 1)!

(i− 1)!j!k!
+

j

j
· (n− 1)!

i!(j − 1)!k!
+

k

k
· (n− 1)!

i!j!(k − 1)!

=
i(n− 1)!

i(i− 1)!j!k!
+

j(n− 1)!

i!j(j − 1)!k!
+

k(n− 1)!

i!j!k(k − 1)!

=
i(n− 1)!

i!j!k!
+

j(n− 1)!

i!j!k!
+

k(n− 1)!

i!j!k!

2Recall that we define
(
a
b

)
= 0 when b < 0 or b > a. Without this notational convenience, we must specify

that 0 ≤ k, k ≤ r, k ≤ n and n− k ≤ g, so that max{0, n− g} ≤ k ≤ min{r, n}, which is quite annoying to say.
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=
i(n− 1)! + j(n− 1)! + k(n− 1)!

i!j!k!

=
(i + j + k)(n− 1)!

i!j!k!

=
n(n− 1)!

i!j!k!

=
n!

i!j!k!

=

(
n

i, j, k

)
.

5. Double Factorial. For a positive integer n we define the double factorial as follows:

n!! =

{
n(n− 2)(n− 4) · · · 4 · 2 if n is even,

n(n− 2)(n− 4) · · · 3 · 1 if n is odd.

(a) For any m ≥ 1, show that (2m)!!(2m− 1)!! = (2m)!.
(b) For any m ≥ 1, show that (2m)!! = 2mm!.

(c) Combine (a) and (b) to show that (2m− 1)!! = (2m)!
2mm! .

(a): We have

(2m)! = (2m)(2m− 1)(2m− 2)(2m− 3) · · · 4 · 3 · 2 · 1
= [(2m)(2m− 2) · · · 4 · 2][(2m− 1)(2m− 3) · · · · 3 · 1]

= (2m)!!(2m− 1)!!.

(b): We have

(2m)!! = (2m)(2m− 2)(2m− 4) · · · 4 · 2
= [2(m)][2(m− 1)][2(m− 2)] · · · [2(2)][2(1)]

= 2m(m)(m− 1)(m− 2) · · · · 2 · 1
= 2mm!.

(c): We have

(2m)!!(2m− 1)!! = (2m)! (a)

(2m− 1)!! = (2m)!/(2m)!!

(2m−!)!! =
(2m)!

2mm!
. (b)

6. Generalized Binomial Coefficients. For any number z and positive integer k we define(
z

k

)
=

(z)k
k!

=
z(z − 1) · · · (z − k + 1)

k!
.

This formula agrees with the usual binomial coefficients when z is a positive integer, but it
makes sense even when z is negative or when z is a fraction.

(a) Use the formula to compute
(−3

4

)
.
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(b) Give an algebraic proof that(
−z
k

)
= (−1)k

(
z + k − 1

k

)
.

(c) Give an algebraic proof that(
1/2

k

)
=

(−1)k−1

k · 22k−1
·
(

2(k − 1)

k − 1

)
.

[Hint: At some point you will need to use Problem 5(c) with m = k − 1.]

(a): We have (
−3

4

)
=

(−3)4
4!

=
(−3)(−4)(−5)(−6)

4 · 3 · 2 · 1
= 15.

(b): We have(
−n
k

)
=

(−n)k
k!

=
1

k!
(−n)(−n− 1)(−n− 2) · · · (−n− k + 1)

=
1

k!
[(−1)(n)][(−1)(n + 1)][(−1)(n + 2)] · · · [(−1)(n + k − 1)]

=
(−1)k

k!
(n)(n + 1)(n + 2) · · · (n + k − 1)

=
(−1)k

k!
(n + k − 1)(n + k − 2) · · · (n + 1)(n)

=
(−1)k

k!
(n + k − 1)k

= (−1)k
(n + k − 1)k

k!

= (−1)k
(
n + k − 1

k

)
.

(c): We have(
1/2

k

)
=

1

k!
(1/2)k

=
1

k!
(1/2)(1/2− 1)(1/2− 2) · · · (1/2− k + 1)

=
1

k!
(1/2)(−1/2)(−3/2) · · · ((−2k + 3)/2)

=
1

k!
[(1/2)(1)][(1/2)(−1)][(1/2)(−3)] · · · [(1/2)(−2k + 3)]

=
1

k!

(
1

2

)k

(1)(−1)(−3) · · · (−2k + 3)

=
1

k!

(
1

2

)k

(−1)(−3) · · · (−(2(k − 1)− 1))
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=
1

k!

(
1

2

)k

(−1)k−1(1)(3) · · · (2(k − 1)− 1)

=
(−1)k−1

2kk!
(1)(3) · · · (2(k − 1)− 1)

=
(−1)k−1

2kk!
(2(k − 1))− 1) · · · (3)(1)

=
(−1)k−1

2kk!
(2(k − 1)− 1)!!

=
(−1)k−1

2kk!
· (2(k − 1))!

2k−1(k − 1)!
Problem 5(c)

=
(−1)k−1

2k2k−1k(k − 1)!
· (2(k − 1))!

(k − 1)!

=
(−1)k−1

k · 22k−1
· (2(k − 1))!

(k − 1)!(k − 1)!

=
(−1)k−1

k · 22k−1
·
(

2(k − 1)

k − 1

)
.

That was fun.

Remark: Combining this calculation with Newton’s binomial theorem gives us the power series
expansion of

√
1 + x for |x| < 1:

√
1 + x = (1 + x)1/2

=
∑
k≥0

(
1/2

k

)
· xk

=
∑
k≥0

(−1)k−1

k · 22k−1
·
(

2(k − 1)

k − 1

)
· xk

= 1 +
1

2
· x− 1

8
· x2 +

1

16
· x3 − 5

128
· x4 +

7

256
· x5 − 21

1024
· x6 + · · · .


