1. Write It Down! In each case, explicitly write down all the possibilities.
(a) Ordered selections of 3 things from the set $\{a, b, c, d\}$. No repetition allowed.
(b) Unordered selections of 2 things from the set $\{a, b, c, d, e, f\}$. No repetition allowed.
(c) Non-negative integer solutions $c, v, s \geq 0$ to the equation $c+v+s=4$. [Hint: There are three flavors of ice cream. You want to buy four gallons.]
2. Just the Numbers, Please. Count the possibilities in each case.
(a) Phone numbers consisting of 7 digits.
(b) Rearrangements of the letters m, a, m, m, a, l.
(c) Poker hands, consisting of 5 cards drawn from a deck of 52 .
(d) Non-negative integer solutions $x+y+z \geq 0$ to the equation $x+y+z=7$.
3. Vandermonde Convolution. For any positive integers r, g, n we have ${ }^{1}$

$$
\sum_{k}\binom{r}{k}\binom{g}{n-k}=\binom{r+g}{n}
$$

(a) Give a counting proof of this identity. [Hint: There are r red balls and g green balls in a bowl. You reach in and grab a collection of n unordered balls.]
(b) Use the identity to prove that $\binom{n}{0}^{2}+\binom{n}{1}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n}$.
4. Trinomial Recurrence. The trinomial coefficients are defined as follows:

$$
\binom{n}{i, j, k}:=\frac{n!}{i!j!k!}, \quad \text { where we must have } i+j+k=n .
$$

Use algebra to prove the trinomial recurrence relation:

$$
\binom{n}{i, j, k}=\binom{n-1}{i-1, k, j}+\binom{n-1}{i, j-1, k}+\binom{n-1}{i, j, k-1} .
$$

5. Double Factorial. For a positive integer n we define the double factorial as follows:

$$
n!!= \begin{cases}n(n-2)(n-4) \cdots 4 \cdot 2 & \text { if } n \text { is even } \\ n(n-2)(n-4) \cdots 3 \cdot 1 & \text { if } n \text { is odd. }\end{cases}
$$

(a) For any $m \geq 1$, show that $(2 m)!$! $(2 m-1)$!! $=(2 m)$!.
(b) For any $m \geq 1$, show that $(2 m)!!=2^{m} m$!.
(c) Combine (a) and (b) to show that $(2 m-1)!!=\frac{(2 m)!}{2^{m} m!}$.
6. Generalized Binomial Coefficients. For any number z and positive integer k we define

$$
\binom{z}{k}=\frac{(z)_{k}}{k!}=\frac{z(z-1) \cdots(z-k+1)}{k!} .
$$

This formula agrees with the usual binomial coefficients when z is a positive integer, but it makes sense even when z is negative or when z is a fraction.
(a) Use the formula to compute $\binom{-3}{4}$.

[^0](b) Give an algebraic proof that
$$
\binom{-z}{k}=(-1)^{k}\binom{z+k-1}{k}
$$
(c) Give an algebraic proof that
$$
\binom{1 / 2}{k}=\frac{(-1)^{k-1}}{k \cdot 2^{2 k-1}} \cdot\binom{2(k-1)}{k-1}
$$
[Hint: At some point you will need to use Problem 5(c) with $m=k-1$.]

[^0]: ${ }^{1}$ We sum over all integers k, but only finitely many summands will be non-zero.

