1. Base b Arithmetic. Convert the number 123456 into base b for the following values of b :
(a) $b=2$
(b) $b=5$
(c) $b=16$ [Use the letters A, B, C, D, E, F for $10,11,12,13,14,15$.]

I'll do them in reverse order.
(c): We divide 123456 by 16 and then repeatedly divide the quotient by 16 :

$$
\begin{aligned}
\mathbf{1 2 3 4 5 6} & =16 \cdot \mathbf{7 7 1 6}+\mathbf{0} \\
\mathbf{7 7 1 6} & =16 \cdot \mathbf{4 8 2}+\mathbf{4} \\
\mathbf{4 8 2} & =16 \cdot \mathbf{3 0}+\mathbf{2} \\
\mathbf{3 0} & =16 \cdot \mathbf{1}+\mathbf{1 4} \\
\mathbf{1} & =16 \cdot \mathbf{0}+\mathbf{1} .
\end{aligned}
$$

It follows that

$$
123456=0+4 \cdot 16+2 \cdot 16^{2}+14 \cdot 16^{3}+1 \cdot 16^{4} .
$$

Since E represents 14 we express this as

$$
123456=(1 E 240)_{16} .
$$

(b): This time we divide 123456 by 5 and then divide each quotient by 5 :

$$
\begin{aligned}
\mathbf{1 2 3 4 5 6} & =5 \cdot \mathbf{2 4 6 9 1}+\mathbf{1} \\
\mathbf{2 4 6 9 1} & =5 \cdot \mathbf{4 9 3 8}+\mathbf{1} \\
4938 & =5 \cdot \mathbf{9 8 7}+\mathbf{3} \\
\mathbf{9 8 7} & =5 \cdot \mathbf{1 7 9}+\mathbf{2} \\
\mathbf{1 7 9} & =5 \cdot \mathbf{3 9}+\mathbf{2} \\
\mathbf{3 9} & =5 \cdot \mathbf{7}+\mathbf{4} \\
\mathbf{7} & =5 \cdot \mathbf{1}+\mathbf{2} \\
\mathbf{1} & =5 \cdot \mathbf{0}+\mathbf{1} .
\end{aligned}
$$

We conclude that

$$
123456=(12422311)_{5}
$$

(a): This time I'll skip all the details:

$$
123456=(11110001001000000)_{2} .
$$

2. Carry the One. This problem generalizes base 10 phenomena such as

$$
2749999999+1=2750000000
$$

Fix a base $b \geq 2$. Then for any integers $k, r \in \mathbb{Z}$ with $k \geq 1$ prove that

$$
1+(b-1)+(b-1) b+(b-1) b^{2}+\cdots+(b-1) b^{k-1}+r b^{k}=(r+1) b^{k} .
$$

[Hint: Use the geometric series $1+b+\cdots+b^{k-1}=\left(b^{k}-1\right) /(b-1)$.]

First we remind ourselves about the geometric series:

$$
\begin{aligned}
\left(1+b+b^{2}+\cdots+b^{k-1}\right)(b-1) & =\left(b+b^{2}+\cdots+b^{k}\right)-\left(1+b+\cdots+b^{k-1}\right) \\
& =-1+b-b+b^{2}-b^{2}+\cdots+b^{k-1}-b^{k-1}+b^{k} \\
& =-1+0+0+\cdots+0+b^{k} \\
& =b^{k}-1 .
\end{aligned}
$$

It follows (for $b \neq 1$) that ${ }^{1}$

$$
1+b+b^{2}+\cdots+b^{k-1}=\frac{b^{k}-1}{b-1}
$$

Now we will use this to show that

$$
(\ldots, r, b-1, b-1, \cdots, b-1)_{b}+1=(\ldots, r+1,0,0, \ldots, 0)_{b} .
$$

(Assume that $b-1$ occurs $k-1$ times.) Indeed, the left side represents the number

$$
\begin{aligned}
& 1+\left[(b-1)+(b-1) b+(b-1) b^{2}+\cdots+(b-1) b^{k-1}+r b^{k}+\cdots\right] \\
& =1+(b-1)\left(1+b+b^{2}+\cdots+b^{k-1}\right)+r b^{k}+\cdots \\
& =1+(b-1)\left(b^{k}-1\right) /(b-1)+r b^{k}+\cdots \\
& =1+\left(b^{k}-1\right)+r b^{k}+\cdots \\
& =b^{k}+r b^{k}+\cdots \\
& =(r+1) b^{k}+\cdots \\
& =0+0 b+0 b^{2}+\cdots+0 b^{k-1}+(r+1) b^{k}+\cdots .
\end{aligned}
$$

3. Lemma for the Euclidean Algorithm. Consider any positive $a, b, c, x \in \mathbb{Z}$ such that

$$
a=b x+c .
$$

(a) If $d \in \mathbb{Z}$ is a common divisor of b and c, show that d also divides a.
(b) If $d \in \mathbb{Z}$ is a common divisor of a and b, show that d also divides c.
(c) Combine (a) and (b) to show that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)$.
(a): Suppose that $d \mid b$ and $d \mid c$, so that $b=d b^{\prime}$ and $c=d c^{\prime}$ for some integers $b^{\prime}, c^{\prime} \in \mathbb{Z}$. Since $a=b x+c$ it follows that

$$
\begin{aligned}
a & =b x+c \\
& =d b^{\prime} x+d c^{\prime} \\
& =d\left(b^{\prime} x+c^{\prime}\right),
\end{aligned}
$$

and hence $d \mid a$.
(b): Suppose that $d \mid a$ and $d \mid a$, so that $a=d a^{\prime}$ and $b=d b^{\prime}$ for some integers $a^{\prime}, b^{\prime} \in \mathbb{Z}$. Since $a=b x+c$ it follows that

$$
\begin{aligned}
c & =a-b x \\
& =d a^{\prime}-d b^{\prime} x \\
& =d\left(a^{\prime}-b^{\prime} x\right),
\end{aligned}
$$

and hence $d \mid c$.

[^0](c): We have shown that the set of common divisors of a and b is the same as the set of common divisors of b and c :
$\{$ common divisors of a and $b\}=\{$ common divisors of b and $c\}$.
It follows that the greatest element of each set is the same, i.e., that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)$.

4. Extended Euclidean Algorithm.

(a) Find integers $x, y \in \mathbb{Z}$ such that $221 x+132 y=1$.
(b) Use your answer to solve the congruence $221 c \equiv 7(\bmod 132)$ to find c. [Hint: From part (a) we have $221 x \equiv 1(\bmod 132)$. Multiply both sides of $221 c \equiv 7$ by x.]
(a): We consider the set of integer triples (x, y, r) satisfying $221 x+132 y=r$. Beginning with the obvious triples $(1,0,221)$ and $(0,1,132)$, we perform row operations until we reach a triple of the form $(x, y, 1)$:

x	y	r
1	0	221
0	1	132
1	-1	89
-1	2	43
3	-5	3
-43	72	1.

Reminder of the method: Dividing 43 by 3 gives $43=14 \cdot 3+1$. Thus the row following $(-1,2,43)$ and $(3,-5,3)$ is

$$
(-1,2,43)-14(3,-5,3)=(-43,72,1) .
$$

We conclude that $221(-43)+132(72)=1$. Note: This solution is not unique. Since $221(132 k)+132(-221 k)=0$ for any k, we also have

$$
221(-43+132 k)+132(72-221 k)=1 \quad \text { for any } k \in \mathbb{Z}
$$

(b): Since $132 \equiv 0(\bmod 132)$, the result from part (a) tells us that

$$
1 \equiv 221(-43)+132(72) \equiv 221(-43)+0(72) \equiv 221(-43)(\bmod 132)
$$

In other words, we can kill $221(\bmod 132)$ by multiplying by $-43(\bmod 132)$, which in standard form is $89(\bmod 132)$. That is, we have

$$
221 \cdot 89 \equiv 221 \cdot(-43) \equiv 1(\bmod 132)
$$

Thus, to solve the congruence $221 c \equiv 7(\bmod 132)$ we should multiply both sides by 89 :

$$
\begin{aligned}
221 c & \equiv 7 \\
89 \cdot 221 c & \equiv 89 \cdot 7 \\
1 c & \equiv 623 \\
c & \equiv 95(\bmod 132) .
\end{aligned}
$$

This answer is unique mod 132, but it represents infinitely many integer solutions:

$$
\begin{aligned}
c & =(\text { any integer that is congruent to } 95 \bmod 132) \\
& =(\text { any integer of the form } 95+132 k \text { for some integer } k \in \mathbb{Z}) .
\end{aligned}
$$

5. Freshman's Dream. Let $p \geq 2$ be prime.
(a) For any integer $0<k<p$, use Euclid's Lemma to prove that

$$
\binom{p}{k} \equiv 0(\bmod p) .
$$

[Hint: We know that $p!=\binom{p}{k} k!(p-k)$!. Since p divides $p!$, Euclid's Lemma tells us that p divides $\binom{p}{k}$ or $k!(p-k)$! If $0<k<p-1$, show that p cannot divide $k!(p-k)$!.]
(b) For any integers $a, b \in \mathbb{Z}$, use part (a) to prove that

$$
(a+b)^{p} \equiv a^{p}+b^{p}(\bmod p) .
$$

[Hint: Use the Binomial Theorem.]
(a): Let $p \geq 2$ be prime and consider any integer $0<k<p$. The binomial coefficient $\binom{p}{k}$ satisfies the equation

$$
\begin{aligned}
p! & =\binom{p}{k} k!(p-k)! \\
p(p-1) \cdots 3 \cdot 2 \cdot 1 & =\binom{p}{k} k(k-1) \cdots 3 \cdot 2 \cdot 1 \cdot(p-k)(p-k-1) \cdots 3 \cdot 2 \cdot 1
\end{aligned}
$$

Since p divides the left hand side, it must also divide the right hand side:

$$
p \left\lvert\,\binom{ p}{k} k(k-1) \cdots 3 \cdot 2 \cdot 1 \cdot(p-k)(p-k-1) \cdots 3 \cdot 2 \cdot 1\right.
$$

Since p is prime, Euclid's Lemma ${ }^{2}$ tells us that p must divide one of the factors on the right hand side. However, since $0<k<p$, every factor on the right hand side is smaller than p, except for $\binom{p}{k}$. Since p cannot divide a number that is smaller than itself, we conclude that p divides $\binom{p}{k}$, which is equivalent to saying that

$$
\binom{p}{k} \equiv 0(\bmod p) .
$$

(b): Let $p \geq 2$ be prime and consider any two integers $a, b \in \mathbb{Z}$. Then from part (a) and the Binomial Theorem we have

$$
\begin{aligned}
(a+b)^{p} & \equiv a^{p}+\binom{p}{1} a^{p-1} b+\binom{p}{2} a^{p-2} b^{2}+\cdots+\binom{p}{p-1} a b^{p-1}+b^{p} \\
& \equiv a^{p}+0 a^{p-1} b+0 a^{p-2} b^{2}+\cdots+0 a b^{p-1}+b^{p} \\
& \equiv a^{p}+b^{p}(\bmod p) .
\end{aligned}
$$

6. RSA Cryptosystem. You are Eve the eavesdropper. You see that Bob sent the following message to Alice using the public key $(n, e)=(55,27)$:

$$
[2,1,33,25,1,9,4,42,25,41,1,23,23,18,17,25,1,11] .
$$

Decrypt the message. [Hint: Factor $n=p q$ as a product of primes. Then find some d such that $d e \equiv 1(\bmod (p-1)(q-1))$; using trial and error, or using Extended Euclidean Algorithm. This is the decryption exponent. After decryption, numbers $1, \ldots, 26$ stand for letters.]

[^1]Notice that $n=55$ factors as $n=p q=5 \cdot 11$, where $p=5$ and $q=11$ are prime. There, we broke the system $\sqrt[3]{3}$ Next we need to find the decryption exponent. Recall that d satisfies

$$
d e+(p-1)(q-1) k=1,
$$

for some integer k whose value we don't care about. Since $e=27$ and $(p-1)(q-1)=40$ we want to find integers $d, k \in \mathbb{Z}$ such that

$$
40 k+27 d=1
$$

and this can be done with the Extended Euclidean Algorithm:

k	d	r
1	0	40
0	1	27
1	-1	13
-2	3	1.

We conclude that $27(3)+40(-2)=1$, hence we can take $d=3$ as the decryption exponent.
To encrypt a message $0 \leq m<55$, Bob computes $c=m^{27}(\bmod 55)$. Then to decrypt Bob's message we compute $c^{3}(\bmod 55)$. The standard representative of $c^{3}(\bmod 55)$, i.e., the representative between 0 and 54, is guaranteed to equal m. Here is Bob's encrypted message:

$$
[2,1,33,25,1,9,4,42,25,41,1,23,23,18,17,25,1,11] .
$$

Raising each integer to the power of 3 and then reducing mod 55 gives

$$
[8,1,22,5,1,14,9,3,5,6,1,12,12,2,18,5,1,11]
$$

which corresponds to the message

$$
[h, a, v, e, a, n, i, c, e, f, a, l, l, b, r, e, a, k] .
$$

[^2]
[^0]: ${ }^{1}$ Remark: Remind yourself what happens when $|b|<1$ and k goes to infinity.

[^1]: ${ }^{2}$ Recall: If p is prime then Euclid's Lemma says that $p \mid a b$ implies $p \mid a$ or $p \mid b$.

[^2]: ${ }^{3}$ If p and q were very large we would not be able to factor $n=p q$.

