1. Base b Arithmetic. Convert the number 123456 into base b for the following values of b :
(a) $b=2$
(b) $b=5$
(c) $b=16$ [Use the letters A, B, C, D, E, F for $10,11,12,13,14,15$.]
2. Carry the One. This problem generalizes base 10 phenomena such as

$$
2749999999+1=2750000000 .
$$

Fix a base $b \geq 2$. Then for any integers $k, r \in \mathbb{Z}$ with $k \geq 1$ prove that

$$
1+(b-1)+(b-1) b+(b-1) b^{2}+\cdots+(b-1) b^{k-1}+r b^{k}=(r+1) b^{k} .
$$

[Hint: Use the geometric series $1+b+\cdots+b^{k-1}=\left(b^{k}-1\right) /(b-1)$.]
3. Lemma for the Euclidean Algorithm. Consider any positive $a, b, c, x \in \mathbb{Z}$ such that

$$
a=b x+c .
$$

(a) If $d \in \mathbb{Z}$ is a common divisor of b and c, show that d also divides a.
(b) If $d \in \mathbb{Z}$ is a common divisor of a and b, show that d also divides c.
(c) Combine (a) and (b) to show that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)$.

4. Extended Euclidean Algorithm.

(a) Find integers $x, y \in \mathbb{Z}$ such that $221 x+132 y=1$.
(b) Use your answer to solve the congruence $221 c \equiv 7(\bmod 132)$ to find c. [Hint: From part (a) we have $221 x \equiv 1(\bmod 132)$. Multiply both sides of $221 c \equiv 7$ by x.]
5. Freshman's Dream. Let $p \geq 2$ be prime.
(a) For any integer $0<k<p$, use Euclid's Lemma to prove that

$$
\binom{p}{k} \equiv 0(\bmod p) .
$$

[Hint: We know that $p!=\binom{p}{k} k!(p-k)$!. Since p divides $p!$, Euclid's Lemma tells us that p divides $\binom{p}{k}$ or $k!(p-k)$! If $0<k<p-1$, show that p cannot divide $k!(p-k)$!.]
(b) For any integers $a, b \in \mathbb{Z}$, use part (a) to prove that

$$
(a+b)^{p} \equiv a^{p}+b^{p}(\bmod p) .
$$

[Hint: Use the Binomial Theorem.]
6. RSA Cryptosystem. You are Eve the eavesdropper. You see that Bob sent the following message to Alice using the public key $(n, e)=(55,27)$:

$$
[2,1,33,25,1,9,4,42,25,41,1,23,23,18,17,25,1,11] .
$$

Decrypt the message. [Hint: Factor $n=p q$ as a product of primes. Then find some d such that $d e \equiv 1(\bmod (p-1)(q-1))$; using trial and error, or using Extended Euclidean Algorithm. This is the decryption exponent. After decryption, numbers $1, \ldots, 26$ stand for letters.]

