1. Truth Tables.

(a) Draw truth tables to prove that $\neg(P \vee Q)=\neg P \wedge \neg Q$ and $\neg(P \wedge Q)=\neg P \vee \neg Q$.
(b) Draw truth tables for the following four Boolean functions:

$$
P \Rightarrow Q \quad Q \Rightarrow P \quad \neg P \Rightarrow \neg Q \quad \neg Q \Rightarrow \neg P .
$$

Which ones are the same?

2. Methods of Proof.

(a) Prove that $P \Rightarrow(R \vee Q)$ equals $(\neg Q \wedge \neg R) \Rightarrow \neg P$. [Hint: You could use a truth table but it's easier to combine Problem 1(ab) using algebra.]
(b) Use part (a) to prove the following theorem about integers $n, m \in \mathbb{Z}$: If $m n$ is even, then m is even or n is even.
[Hint: Name the statements P, Q, R.]
3. Peirce's Arrow. The operator NOR (also called Peirce's arrow) is defined as follows:

$$
P \text { NOR } Q=P \downarrow Q=\operatorname{NOT}(P \text { OR } Q)=\neg(P \vee Q) .
$$

Use Boolean algebra (i.e., don't use truth tables) to prove the following identities.
(a) $\neg P=P \downarrow P$
(b) $P \wedge Q=(P \downarrow P) \downarrow(Q \downarrow Q)$
(c) $P \vee Q=(P \downarrow Q) \downarrow(P \downarrow Q)$
4. Injective, Surjective, Bijective. Let $f: S \rightarrow T$ be a function of finite sets. For each element $t \in T$ we consider the number

$$
d(t):=\#\{s \in S: f(s)=t\}=\text { the number of elements of } S \text { that get sent to } t .
$$

We say that f is injective if $d(t) \leq 1$ for all $t \in T$, surjective if $d(t) \geq 1$ for all $t \in T$ and bijective if $d(t)=1$ for all $t \in T$.
(a) If f is injective, prove that $\# S \leq \# T$.
(b) If f is surjective, prove that $\# S \geq \# T$.
(c) If f is bijective, prove that $\# S=\# T$.
[Hint: Observe that $\# S=\sum_{t \in T} d(t)$ and $\# T=\sum_{t \in T} 1$.]
5. Counting Functions. Compute the number of each kind of function.
(a) All functions from $\{1,2,3,4,5\} \rightarrow\{1,2\}$.
(b) Injective functions from $\{1,2\}$ to $\{1,2,3,4,5\}$.
(c) Surjective functions from $\{1,2\}$ to $\{1,2,3,4,5\}$.
(d) Surjective functions from $\{1,2,3,4,5\}$ to $\{1,2\}$. [Hint: In how many ways can you choose the subset of $\{1,2,3,4,5\}$ that get sent to 1 ? You can't send everything to 1 and you can't send nothing to 1.]

