1. Truth Tables.

- (a) Draw truth tables to prove that $\neg(P \lor Q) = \neg P \land \neg Q$ and $\neg(P \land Q) = \neg P \lor \neg Q$.
- (b) Draw truth tables for the following four Boolean functions:

$$P \Rightarrow Q \qquad Q \Rightarrow P \qquad \neg P \Rightarrow \neg Q \qquad \neg Q \Rightarrow \neg P.$$

Which ones are the same?

2. Methods of Proof.

- (a) Prove that $P \Rightarrow (R \lor Q)$ equals $(\neg Q \land \neg R) \Rightarrow \neg P$. [Hint: You could use a truth table but it's easier to combine Problem 1(ab) using algebra.]
- (b) Use part (a) to prove the following theorem about integers $n, m \in \mathbb{Z}$:

If mn is even, then m is even or n is even.

[Hint: Name the statements P, Q, R.]

3. Peirce's Arrow. The operator NOR (also called *Peirce's arrow*) is defined as follows: $P \text{ NOR } Q = P \downarrow Q = \text{ NOT } (P \text{ OR } Q) = \neg (P \lor Q).$

Use Boolean algebra (i.e., don't use truth tables) to prove the following identities.

- (a) $\neg P = P \downarrow P$ (b) $P \land Q = (P \downarrow P) \downarrow (Q \downarrow Q)$ (c) $P \lor Q$
- (c) $P \lor Q = (P \downarrow Q) \downarrow (P \downarrow Q)$

4. Injective, Surjective, Bijective. Let $f : S \to T$ be a function of finite sets. For each element $t \in T$ we consider the number

 $d(t) := \#\{s \in S : f(s) = t\} =$ the number of elements of S that get sent to t.

We say that f is injective if $d(t) \leq 1$ for all $t \in T$, surjective if $d(t) \geq 1$ for all $t \in T$ and bijective if d(t) = 1 for all $t \in T$.

- (a) If f is injective, prove that $\#S \leq \#T$.
- (b) If f is surjective, prove that $\#S \ge \#T$.
- (c) If f is bijective, prove that #S = #T.

[Hint: Observe that $\#S = \sum_{t \in T} d(t)$ and $\#T = \sum_{t \in T} 1$.]

5. Counting Functions. Compute the number of each kind of function.

- (a) All functions from $\{1, 2, 3, 4, 5\} \rightarrow \{1, 2\}$.
- (b) Injective functions from $\{1, 2\}$ to $\{1, 2, 3, 4, 5\}$.
- (c) Surjective functions from $\{1,2\}$ to $\{1,2,3,4,5\}$.
- (d) Surjective functions from $\{1, 2, 3, 4, 5\}$ to $\{1, 2\}$. [Hint: In how many ways can you choose the subset of $\{1, 2, 3, 4, 5\}$ that get sent to 1? You can't send everything to 1 and you can't send nothing to 1.]