
Math 309 Fall 2022
Homework 1 Drew Armstrong

We will use the following notations for sums of (all, even, odd) pth powers:

Sp(n) = 1p + 2p + · · ·+ np =

n∑
k=1

kp,

SEp(n) = 2p + 4p + 6p + · · ·+ (2n)p =

n∑
k=1

(2k)p,

SOp(n) = 1p + 3p + 5p + · · ·+ (2n− 1)p =

n∑
k=1

(2k − 1)p.

1. Consider the following statement P (n) = “S3(n) = n2(n+ 1)2/4”. In this problem you will
prove by induction that P (n) is true for all integers n ≥ 1.

(a) Check by hand that P (n) is true for n = 1, 2, 3, 4.
(b) Now fix some arbitrary n ≥ 1 and assume for induction that P (n) is a true state-

ment. In this case, prove that P (n + 1) is also a true statement. [Hint: Use the
recurrence S3(n + 1) = S3(n) + (n + 1)3.]

(a): For induction we only need to check one base case, but for fun we’ll check four:

P (1) = “13 =
12 · 22

4
” = “1 = 1” = T,

P (2) = “13 + 23 =
22 · 32

4
” = “9 = 9” = T,

P (3) = “13 + 23 + 33 =
32 · 42

4
” = “36 = 36” = T,

P (4) = “13 + 23 + 33 + 43 =
42 · 52

4
” = “100 = 100” = T.

(b): Now fix some arbitrary integer n ≥ 1 and assume for induction that P (n) is a true
statement. That is, suppose that

13 + 23 + · · ·+ n3 =
n2(n + 1)2

4
.

In this case, we must have

13 + 23 + · · ·+ (n + 1)3 =
[
13 + 23 + · · ·+ n3

]
+ (n + 1)3

=
n2(n + 1)2

4
+ (n + 1)3

= (n + 1)2
[
n2

4
+ (n + 1)

]
=

(n + 1)2(n2 + 4n + 4)

4

=
(n + 1)2(n + 2)2

4
.

Hence the statement P (n + 1) is also true. �



2. Find explicit formulas for SE2(n) and SO2(n). [Hint: You may assume that
∑n

k=1 k =
n(n + 1)/2 and

∑n
k=1 k

2 = n(n + 1)(2n + 1)/6.]

The sum of square of even numbers is

SE2(n) =

n∑
k=1

(2k)2 =

n∑
k=1

4k2 = 4

n∑
k=1

k2 = 4 · n(n + 1)(2n + 1)

6
.

The sum of square of odd numbers is

SO2(n) =

n∑
k=1

(2k − 1)2

=

n∑
k=1

(4k2 − 4k + 1)

= 4

n∑
k=1

k2 − 4

n∑
k=1

k +

n∑
k=1

1

= 4 · n(n + 1)(2n + 1)

6
− 4 · n(n + 1)

2
+ n.

You don’t need to simplify this, but it turns out that

SO2(n) =
n(2n + 1)(2n− 1)

3
.

Remark: Observe that

SE2(n) + SO2(n) =
4n(n + 1)(2n + 1)

6
+

2n(2n + 1)(2n− 1)

6

=
(2n)(2n + 1)

6
· [2(n + 1) + (2n− 1)]

=
(2n)(2n + 1)

6
· [2(2n) + 1]

= S2(2n),

as it should be.

3. Define the sequence C0, C1, C2, C3 . . . by the following initial condition and recurrence:

Cn :=

{
1 if n = 0,

Cn−1 + n2 − n if n ≥ 1.

Find a closed formula for Cn.

Write out the first few terms until you see a pattern:

C1 = C0 + 12 − 1,

C2 = C1 + 22 − 2 = C0 + 12 − 1 + 22 − 2,

C3 = C2 + 33 − 3 = C0 + 12 − 1 + 22 − 2 + 33 − 3.

We observe that the pattern is

Cn = C0 + 11 − 1 + 22 − 2 + 33 − 3 + · · ·+ n2 − n = C0 +

n∑
k=1

k2 −
n∑

k=1

k.



Using the known formulas for sums of squares and first powers, this becomes1

Cn = C0 +
n(n + 1)(2n + 1)

6
− n(n + 1)

2
= C0 +

1

3
n3 − 1

3
n.

From this we see that the value of C0 isn’t really important to the general formula.

Remark: Observe that this formula has a nice factorization:

Cn = C0 +
n(n− 1)(n + 1)

3
.

This was an accident on my part. It follows from specific case of the “hockey stick identity”:

n∑
k=1

(
k

2

)
=

(
n + 1

3

)
.

Then we have
n∑

k=1

(k2 − k) = 2

n∑
k=1

k(k − 1)

2
= 2

n∑
k=1

(
k

2

)
= 2

(
n + 1

3

)
=

(n + 1)n(n− 1)

3
.

You don’t need to know this.

4. The sequence of factorials 0!, 1!, 2!, . . . is defined as follows:

n! :=

{
1 if n = 0,

(n− 1)! · n if n ≥ 1.

You will prove by induction that n! > 3n for all n ≥ 7.

(a) Verify that 7! > 37.
(b) Now fix some arbitrary n ≥ 7 and assume for induction that n! > 3n. In this case,

prove that (n + 1)! > 3n+1. [Hint: Use the facts (n + 1)! = n! · (n + 1) and n + 1 > 3.]

(a): My computer says that 7! = 5040 and 37 = 2187, hence 7! > 37.

(b): Now fix some arbitrary n ≥ 7 and assume for induction that n! > 3n. In this case we
will show that (n + 1)! > 3n+1. Indeed, we observe that

(n + 1)! = (n + 1)n! definition of factorial

> (n + 1)3n because n! > 3n

> 3 · 3n because n + 1 > 3

= 3n+1.

�

Recall the definition of Pascal’s Triangle. For all integers n, k with n ≥ 0 we have

(
n

k

)
:=


1 n = 0, k = 0,

0 n = 0, k 6= 0,(
n−1
k−1

)
+
(
n−1
k

)
n ≥ 1, k = anything.

1You don’t need to simplify it.



This definition implies that
(
n
k

)
= 0 for k < 0 or k > n and

(
n
k

)
= 1 for k = 0 or k = n. The

Binomial Theorem says that for all numbers x we have

(1 + x)n =
∑
k

(
n

k

)
xk.

5. Use the Binomial Theorem to prove the following identity for all n ≥ 1:(
n

1

)
+ 2

(
n

2

)
+ 3

(
n

3

)
+ · · ·+ n

(
n

n

)
= n · 2n−1.

[Hint: Differentiate with respect to x.]

The Binomial Theorem holds for any value of x:

(1 + x)n =

(
n

0

)
+

(
n

1

)
x +

(
n

2

)
x2 + · · ·+

(
n

n

)
xn.

Taking the derivative of both sides with respect to x gives

n(1 + x)n=1 =

(
n

1

)
x +

(
n

2

)
(2x) + · · ·+

(
n

n

)
(nxn−1).

This formula also holds for any value of x. In particular, substituting x = 1 gives

n(1 + 1)n=1 =

(
n

1

)
+ 2

(
n

2

)
+ · · ·+ n

(
n

n

)
,

which is the formula we want.

6. Let Rn(d) be the maximum number of d-dimensional regions formed by n hyperplanes in
d-dimensional space.2 Ludwig Schläfli (1850) gave a geometric argument that

Rn(d) =


1 d = 0, n ≥ 1,

1 n = 0, d ≥ 1,

Rn−1(d) + Rn−1(d− 1) n ≥ 1, d ≥ 1.

Use Schläfli’s recurrence and induction on n to prove that

Rn(d) =

(
n

d

)
+

(
n

d− 1

)
+ · · ·+

(
n

1

)
+

(
n

0

)
for all n ≥ 0, d ≥ 0.

Hint: For all n ≥ 0, consider the statement

P (n) = “Rn(d) =

(
n

d

)
+

(
n

d− 1

)
+ · · ·+

(
n

1

)
+

(
n

0

)
for all d ≥ 0”.

Check that P (0) is true. Then fix some arbitrary n ≥ 1 and assume for induction that P (n)
is true. In this case, prove that P (n + 1) is also true. You will need to use the recurrence
formula for Pascal’s Triangle.

Proof. By definition we have R0(d) = 1 for any d ≥ 0. Also by definition, we have
(
0
k

)
= 0

for any k 6= 0. Thus for any d ≥ 0 we have(
0

d

)
+

(
0

d− 1

)
+ · · ·+

(
0

0

)
= 0 + 0 + · · ·+ 0 + 1 = 1 = R0(d).

This shows that the statement P (0) is true.

2A hyperplane is a flat (d− 1)-dimensional shape in d-dimensional space. Never mind.



Now fix some arbitrary n ≥ 0 and assume for induction that P (n) is true. That is, suppose
that for any d ≥ 0 we have

Rn(d) =

(
n

d

)
+

(
n

d− 1

)
+ · · ·+

(
n

0

)
.

In this case we will prove for any d ≥ 0 that

Rn+1(d) =

(
n + 1

d

)
+

(
n + 1

d− 1

)
+ · · ·+

(
n + 1

0

)
.

How? From the definition of Rn(d) and the induction hypothesis, we have

Rn+1(d) = Rn(d) + Rn(d− 1)

=

(
n

d

)
+

(
n

d− 1

)
+ · · ·+

(
n

0

)
+

(
n

d− 1

)
+

(
n

d− 2

)
+ · · ·+

(
n

0

)
.

Now we group these terms in pairs and use the definition of Pascal’s Triangle. Only one of
the terms doesn’t get paired up:

Rn+1(d) =

(
n

d

)
+

(
n

d− 1

)
+ · · ·+

(
n

0

)
+

(
n

d− 1

)
+

(
n

d− 2

)
+ · · ·+

(
n

0

)
=

[(
n

d

)
+

(
n

d− 1

)]
+

[(
n

d− 1

)
+

(
n

d− 2

)]
+ · · ·+

[(
n

1

)
+

(
n

0

)]
+

(
n

0

)
=

(
n + 1

d

)
+

(
n + 1

d− 1

)
+ · · ·+

(
n + 1

1

)
+

(
n

0

)
.

But it’s okay because
(
n
0

)
=
(
n+1
0

)
= 1. Hence we have

Rn+1(d) =

(
n + 1

d

)
+

(
n + 1

d− 1

)
+ · · ·+

(
n + 1

0

)
,

as desired. �

Remark: The Steiner-Schläfli Theorem was pure recreational mathematics. But recreational
mathematics has a habit of becoming useful. See Gilbert Strang’s Linear Algebra and Learning
from Data (page 381) for an application to neural networks.


