We will use the following notations for sums of (all, even, odd) p th powers:

$$
\begin{aligned}
& S_{p}(n)=1^{p}+2^{p}+\cdots+n^{p}=\sum_{k=1}^{n} k^{p}, \\
& S E_{p}(n)=2^{p}+4^{p}+6^{p}+\cdots+(2 n)^{p}=\sum_{k=1}^{n}(2 k)^{p}, \\
& S O_{p}(n)=1^{p}+3^{p}+5^{p}+\cdots+(2 n-1)^{p}=\sum_{k=1}^{n}(2 k-1)^{p} .
\end{aligned}
$$

1. Consider the following statement $P(n)=$ " $S_{3}(n)=n^{2}(n+1)^{2} / 4$ ". In this problem you will prove by induction that $P(n)$ is true for all integers $n \geq 1$.
(a) Check by hand that $P(n)$ is true for $n=1,2,3,4$.
(b) Now fix some arbitrary $n \geq 1$ and assume for induction that $P(n)$ is a true statement. In this case, prove that $P(n+1)$ is also a true statement. [Hint: Use the recurrence $S_{3}(n+1)=S_{3}(n)+(n+1)^{3}$.]
(a): For induction we only need to check one base case, but for fun we'll check four:

$$
\begin{aligned}
& P(1)=" 1^{3}=\frac{1^{2} \cdot 2^{2}}{4} "=" 1=1 "=T, \\
& P(2)=" 1^{3}+2^{3}=\frac{2^{2} \cdot 3^{2}}{4} "=" 9=9 "=T, \\
& P(3)=" 1^{3}+2^{3}+3^{3}=\frac{3^{2} \cdot 4^{2}}{4} "=" 36=36 "=T, \\
& P(4)=" 1^{3}+2^{3}+3^{3}+4^{3}=\frac{4^{2} \cdot 5^{2}}{4} "=" 100=100 "=T .
\end{aligned}
$$

(b): Now fix some arbitrary integer $n \geq 1$ and assume for induction that $P(n)$ is a true statement. That is, suppose that

$$
1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

In this case, we must have

$$
\begin{aligned}
1^{3}+2^{3}+\cdots+(n+1)^{3} & =\left[1^{3}+2^{3}+\cdots+n^{3}\right]+(n+1)^{3} \\
& =\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3} \\
& =(n+1)^{2}\left[\frac{n^{2}}{4}+(n+1)\right] \\
& =\frac{(n+1)^{2}\left(n^{2}+4 n+4\right)}{4} \\
& =\frac{(n+1)^{2}(n+2)^{2}}{4} .
\end{aligned}
$$

Hence the statement $P(n+1)$ is also true.
2. Find explicit formulas for $S E_{2}(n)$ and $S O_{2}(n)$. [Hint: You may assume that $\sum_{k=1}^{n} k=$ $n(n+1) / 2$ and $\sum_{k=1}^{n} k^{2}=n(n+1)(2 n+1) / 6$.]

The sum of square of even numbers is

$$
S E_{2}(n)=\sum_{k=1}^{n}(2 k)^{2}=\sum_{k=1}^{n} 4 k^{2}=4 \sum_{k=1}^{n} k^{2}=4 \cdot \frac{n(n+1)(2 n+1)}{6} .
$$

The sum of square of odd numbers is

$$
\begin{aligned}
S O_{2}(n) & =\sum_{k=1}^{n}(2 k-1)^{2} \\
& =\sum_{k=1}^{n}\left(4 k^{2}-4 k+1\right) \\
& =4 \sum_{k=1}^{n} k^{2}-4 \sum_{k=1}^{n} k+\sum_{k=1}^{n} 1 \\
& =4 \cdot \frac{n(n+1)(2 n+1)}{6}-4 \cdot \frac{n(n+1)}{2}+n .
\end{aligned}
$$

You don't need to simplify this, but it turns out that

$$
S O_{2}(n)=\frac{n(2 n+1)(2 n-1)}{3}
$$

Remark: Observe that

$$
\begin{aligned}
S E_{2}(n)+S O_{2}(n) & =\frac{4 n(n+1)(2 n+1)}{6}+\frac{2 n(2 n+1)(2 n-1)}{6} \\
& =\frac{(2 n)(2 n+1)}{6} \cdot[2(n+1)+(2 n-1)] \\
& =\frac{(2 n)(2 n+1)}{6} \cdot[2(2 n)+1] \\
& =S_{2}(2 n),
\end{aligned}
$$

as it should be.
3. Define the sequence $C_{0}, C_{1}, C_{2}, C_{3} \ldots$ by the following initial condition and recurrence:

$$
C_{n}:=\left\{\begin{array}{lc}
1 & \text { if } n=0 \\
C_{n-1}+n^{2}-n & \text { if } n \geq 1
\end{array}\right.
$$

Find a closed formula for C_{n}.
Write out the first few terms until you see a pattern:

$$
\begin{aligned}
& C_{1}=C_{0}+1^{2}-1, \\
& C_{2}=C_{1}+2^{2}-2=C_{0}+1^{2}-1+2^{2}-2, \\
& C_{3}=C_{2}+3^{3}-3=C_{0}+1^{2}-1+2^{2}-2+3^{3}-3 .
\end{aligned}
$$

We observe that the pattern is

$$
C_{n}=C_{0}+1^{1}-1+2^{2}-2+3^{3}-3+\cdots+n^{2}-n=C_{0}+\sum_{k=1}^{n} k^{2}-\sum_{k=1}^{n} k .
$$

Using the known formulas for sums of squares and first powers, this becomes ${ }^{11}$

$$
C_{n}=C_{0}+\frac{n(n+1)(2 n+1)}{6}-\frac{n(n+1)}{2}=C_{0}+\frac{1}{3} n^{3}-\frac{1}{3} n .
$$

From this we see that the value of C_{0} isn't really important to the general formula.
Remark: Observe that this formula has a nice factorization:

$$
C_{n}=C_{0}+\frac{n(n-1)(n+1)}{3} .
$$

This was an accident on my part. It follows from specific case of the "hockey stick identity":

$$
\sum_{k=1}^{n}\binom{k}{2}=\binom{n+1}{3}
$$

Then we have

$$
\sum_{k=1}^{n}\left(k^{2}-k\right)=2 \sum_{k=1}^{n} \frac{k(k-1)}{2}=2 \sum_{k=1}^{n}\binom{k}{2}=2\binom{n+1}{3}=\frac{(n+1) n(n-1)}{3}
$$

You don't need to know this.
4. The sequence of factorials $0!, 1!, 2!, \ldots$ is defined as follows:

$$
n!:= \begin{cases}1 & \text { if } n=0 \\ (n-1)!\cdot n & \text { if } n \geq 1\end{cases}
$$

You will prove by induction that $n!>3^{n}$ for all $n \geq 7$.
(a) Verify that $7!>3^{7}$.
(b) Now fix some arbitrary $n \geq 7$ and assume for induction that $n!>3^{n}$. In this case, prove that $(n+1)!>3^{n+1}$. [Hint: Use the facts $(n+1)!=n!\cdot(n+1)$ and $n+1>3$.]
(a): My computer says that $7!=5040$ and $3^{7}=2187$, hence $7!>3^{7}$.
(b): Now fix some arbitrary $n \geq 7$ and assume for induction that $n!>3^{n}$. In this case we will show that $(n+1)!>3^{n+1}$. Indeed, we observe that

$$
\begin{aligned}
(n+1)! & =(n+1) n! & \text { definition of factorial } \\
& >(n+1) 3^{n} & \text { because } n!>3^{n} \\
& >3 \cdot 3^{n} & \text { because } n+1>3 \\
& =3^{n+1} . &
\end{aligned}
$$

Recall the definition of Pascal's Triangle. For all integers n, k with $n \geq 0$ we have

$$
\binom{n}{k}:= \begin{cases}1 & n=0, k=0 \\ 0 & n=0, k \neq 0 \\ \binom{n-1}{k-1}+\binom{n-1}{k} & n \geq 1, k=\text { anything } .\end{cases}
$$

[^0]This definition implies that $\binom{n}{k}=0$ for $k<0$ or $k>n$ and $\binom{n}{k}=1$ for $k=0$ or $k=n$. The Binomial Theorem says that for all numbers x we have

$$
(1+x)^{n}=\sum_{k}\binom{n}{k} x^{k}
$$

5. Use the Binomial Theorem to prove the following identity for all $n \geq 1$:

$$
\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\cdots+n\binom{n}{n}=n \cdot 2^{n-1} .
$$

[Hint: Differentiate with respect to x.]
The Binomial Theorem holds for any value of x :

$$
(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n} x^{n} .
$$

Taking the derivative of both sides with respect to x gives

$$
n(1+x)^{n=1}=\binom{n}{1} x+\binom{n}{2}(2 x)+\cdots+\binom{n}{n}\left(n x^{n-1}\right) .
$$

This formula also holds for any value of x. In particular, substituting $x=1$ gives

$$
n(1+1)^{n=1}=\binom{n}{1}+2\binom{n}{2}+\cdots+n\binom{n}{n},
$$

which is the formula we want.
6. Let $R_{n}(d)$ be the maximum number of d-dimensional regions formed by n hyperplanes in d-dimensional space \int^{2} Ludwig Schläfli (1850) gave a geometric argument that

$$
R_{n}(d)= \begin{cases}1 & d=0, n \geq 1 \\ 1 & n=0, d \geq 1 \\ R_{n-1}(d)+R_{n-1}(d-1) & n \geq 1, d \geq 1\end{cases}
$$

Use Schläfli's recurrence and induction on n to prove that

$$
R_{n}(d)=\binom{n}{d}+\binom{n}{d-1}+\cdots+\binom{n}{1}+\binom{n}{0} \text { for all } n \geq 0, d \geq 0 .
$$

Hint: For all $n \geq 0$, consider the statement

$$
P(n)=" R_{n}(d)=\binom{n}{d}+\binom{n}{d-1}+\cdots+\binom{n}{1}+\binom{n}{0} \text { for all } d \geq 0 " .
$$

Check that $P(0)$ is true. Then fix some arbitrary $n \geq 1$ and assume for induction that $P(n)$ is true. In this case, prove that $P(n+1)$ is also true. You will need to use the recurrence formula for Pascal's Triangle.

Proof. By definition we have $R_{0}(d)=1$ for any $d \geq 0$. Also by definition, we have $\binom{0}{k}=0$ for any $k \neq 0$. Thus for any $d \geq 0$ we have

$$
\binom{0}{d}+\binom{0}{d-1}+\cdots+\binom{0}{0}=0+0+\cdots+0+1=1=R_{0}(d) .
$$

This shows that the statement $P(0)$ is true.

[^1]Now fix some arbitrary $n \geq 0$ and assume for induction that $P(n)$ is true. That is, suppose that for any $d \geq 0$ we have

$$
R_{n}(d)=\binom{n}{d}+\binom{n}{d-1}+\cdots+\binom{n}{0}
$$

In this case we will prove for any $d \geq 0$ that

$$
R_{n+1}(d)=\binom{n+1}{d}+\binom{n+1}{d-1}+\cdots+\binom{n+1}{0}
$$

How? From the definition of $R_{n}(d)$ and the induction hypothesis, we have

$$
\begin{aligned}
R_{n+1}(d) & =R_{n}(d)+R_{n}(d-1) \\
& =\binom{n}{d}+\binom{n}{d-1}+\cdots+\binom{n}{0}+\binom{n}{d-1}+\binom{n}{d-2}+\cdots+\binom{n}{0}
\end{aligned}
$$

Now we group these terms in pairs and use the definition of Pascal's Triangle. Only one of the terms doesn't get paired up:

$$
\begin{aligned}
R_{n+1}(d) & =\binom{n}{d}+\binom{n}{d-1}+\cdots+\binom{n}{0}+\binom{n}{d-1}+\binom{n}{d-2}+\cdots+\binom{n}{0} \\
& =\left[\binom{n}{d}+\binom{n}{d-1}\right]+\left[\binom{n}{d-1}+\binom{n}{d-2}\right]+\cdots+\left[\binom{n}{1}+\binom{n}{0}\right]+\binom{n}{0} \\
& =\binom{n+1}{d}+\binom{n+1}{d-1}+\cdots+\binom{n+1}{1}+\binom{n}{0}
\end{aligned}
$$

But it's okay because $\binom{n}{0}=\binom{n+1}{0}=1$. Hence we have

$$
R_{n+1}(d)=\binom{n+1}{d}+\binom{n+1}{d-1}+\cdots+\binom{n+1}{0}
$$

as desired.
Remark: The Steiner-Schläfli Theorem was pure recreational mathematics. But recreational mathematics has a habit of becoming useful. See Gilbert Strang's Linear Algebra and Learning from Data (page 381) for an application to neural networks.

[^0]: ${ }^{1}$ You don't need to simplify it.

[^1]: ${ }^{2} \mathrm{~A}$ hyperplane is a flat $(d-1)$-dimensional shape in d-dimensional space. Never mind.

