We will use the following notations for sums of (all, even, odd) p th powers:

$$
\begin{aligned}
& S_{p}(n)=1^{p}+2^{p}+\cdots+n^{p}=\sum_{k=1}^{n} k^{p}, \\
& S E_{p}(n)=2^{p}+4^{p}+6^{p}+\cdots+(2 n)^{p}=\sum_{k=1}^{n}(2 k)^{p}, \\
& S O_{p}(n)=1^{p}+3^{p}+5^{p}+\cdots+(2 n-1)^{p}=\sum_{k=1}^{n}(2 k-1)^{p} .
\end{aligned}
$$

1. Consider the following statement $P(n)=$ " $S_{3}(n)=n^{2}(n+1)^{2} / 4$ ". In this problem you will prove by induction that $P(n)$ is true for all integers $n \geq 1$.
(a) Check by hand that $P(n)$ is true for $n=1,2,3,4$.
(b) Now fix some arbitrary $n \geq 1$ and assume for induction that $P(n)$ is a true statement. In this case, prove that $P(n+1)$ is also a true statement. [Hint: Use the recurrence $S_{3}(n+1)=S_{3}(n)+(n+1)^{3}$.]
2. Find explicit formulas for $S E_{2}(n)$ and $S O_{2}(n)$. [Hint: You may assume that $\sum_{k=1}^{n} k=$ $n(n+1) / 2$ and $\sum_{k=1}^{n} k^{2}=n(n+1)(2 n+1) / 6$.]
3. Define the sequence $C_{0}, C_{1}, C_{2}, C_{3} \ldots$ by the following initial condition and recurrence:

$$
C_{n}:=\left\{\begin{array}{lr}
1 & \text { if } n=0 \\
C_{n-1}+n^{2}-n & \text { if } n \geq 1
\end{array}\right.
$$

Find a closed formula for C_{n}.
4. The sequence of factorials $0!, 1!, 2!, \ldots$ is defined as follows:

$$
n!:= \begin{cases}1 & \text { if } n=0 \\ (n-1)!\cdot n & \text { if } n \geq 1\end{cases}
$$

You will prove by induction that $n!>3^{n}$ for all $n \geq 7$.
(a) Verify that $7!>3^{7}$.
(b) Now fix some arbitrary $n \geq 7$ and assume for induction that $n!>3^{n}$. In this case, prove that $(n+1)!>3^{n+1}$. [Hint: Use the facts $(n+1)!=n!\cdot(n+1)$ and $n+1>3$.]

Recall the definition of Pascal's Triangle. For all integers n, k with $n \geq 0$ we have

$$
\binom{n}{k}:= \begin{cases}1 & n=0, k=0 \\ 0 & n=0, k \neq 0 \\ \binom{n-1}{k-1}+\binom{n-1}{k} & n \geq 1, k=\text { anything } .\end{cases}
$$

This definition implies that $\binom{n}{k}=0$ for $k<0$ or $k>n$ and $\binom{n}{k}=1$ for $k=0$ or $k=n$. The Binomial Theorem says that for all numbers x we have

$$
(1+x)^{n}=\sum_{k}\binom{n}{k} x^{k} .
$$

5. Use the Binomial Theorem to prove the following identity for all $n \geq 1$:

$$
\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\cdots+n\binom{n}{n}=n \cdot 2^{n-1} .
$$

[Hint: Differentiate with respect to x.]
6. Let $R_{n}(d)$ be the maximum number of d-dimensional regions formed by n hyperplanes in d-dimensional space ${ }^{1}$ Ludwig Schläfli (1850) gave a geometric argument that

$$
R_{n}(d)= \begin{cases}1 & d=0, n \geq 1 \\ 1 & n=0, d \geq 1 \\ R_{n-1}(d)+R_{n-1}(d-1) & n \geq 1, d \geq 1\end{cases}
$$

Use Schläfli's recurrence and induction on n to prove that

$$
R_{n}(d)=\binom{n}{d}+\binom{n}{d-1}+\cdots+\binom{n}{1}+\binom{n}{0} \text { for all } n \geq 0, d \geq 0 .
$$

Hint: For all $n \geq 0$, consider the statement

$$
P(n)=" R_{n}(d)=\binom{n}{d}+\binom{n}{d-1}+\cdots+\binom{n}{1}+\binom{n}{0} \text { for all } d \geq 0 "
$$

Check that $P(0)$ is true. Then fix some arbitrary $n \geq 1$ and assume for induction that $P(n)$ is true. In this case, prove that $P(n+1)$ is also true. You will need to use the recurrence formula for Pascal's Triangle.

[^0]
[^0]: ${ }^{1}$ A hyperplane is a flat $(d-1)$-dimensional shape in d-dimensional space. Never mind.

